top of page
Abstract Futuristic Background
Giovanni Compiani


December 7 2023, 5pm Paris time / 11am NY time

Giovanni Compiani

(Chicago Booth)

Demand Estimation with Text and Image Data

Abstract: We propose a demand estimation method that allows researchers to estimate substitution patterns from unstructured image and text data. We first employ a series of machine learning models to measure product similarity from products’ images and textual descriptions. We then estimate a nested logit model with product-pair specific nesting parameters that depend on the image and text similarities between products. Our framework does not require collecting product attributes for each category and can capture product similarity along dimensions that are hard to account for with observed attributes. We apply our method to a dataset describing the behavior of Amazon
shoppers across several categories and show that incorporating texts 
and images in demand estimation helps us recover a flexible cross-price elasticity matrix.

bottom of page