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Abstract

We study the importance of firm sorting for spatial inequality. If productive locations are able
to attract the most productive firms, then firm sorting acts as an amplifier of spatial inequality. We
develop a novel model of spatial firm sorting, in which heterogeneous firms first choose a location
and then hire workers in a frictional local labor market. Firms’ location choices are guided by a
fundamental trade-off: Operating in productive locations increases output per worker, but sharing
a labor market with other productive firms makes it hard to poach and retain workers, and hence
limits firm size. We show that sorting between firms and locations is positive—i.e., more productive
firms settle in more productive locations—if firm and location productivity are complements and
labor market frictions are sufficiently large. We estimate our model using administrative data from
Germany and find that highly productive firms indeed sort into the most productive locations. In
our main application, we quantify the role of firm sorting for wage differences between East and West
Germany, which reveals that firm sorting accounts for 17%-27% of the West-East wage gap.
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1 Introduction
Economic outcomes in developed economies have been starkly unequal since the early 1980s.

Whereas most research focuses on inequality across people, a recent literature highlights

disparate economic fortunes across space. Like inequality at the individual level, the spatial

nature of growth has changed. Traditionally, many economies have been characterized by

spatial convergence, but in past decades, spatial inequality has been increasing, with poor

and rural locations falling further behind. Take Germany as an example: Urban areas are

characterized by around 18% higher wages and value added, and West Germany still has 28%

higher wages and 30% higher value added than East Germany. The phenomenon of a spatial

divide has been attributed to the spatial sorting of more productive workers to cities or to the

productivity advantages of areas with an increasingly larger population. By contrast, much

less is known about the role of firm sorting for inequality across space.

In this project, we aim to fill this gap. We develop a theory of how heterogeneous firms

sort across space and analyze the implications for spatial inequality. In our model, firms first

decide where to produce and then compete for workers in frictional local labor markets that are

characterized by job search of both unemployed and employed workers. If more productive

firms sort into more productive locations, the local job ladder in these locations steepens,

which amplifies spatial wage inequality. We use our framework to shed new light on spatial

wage disparities in Germany, with special focus on the East-West divide. Our findings indicate

that East Germany has significantly lower wages because it lacks highly productive firms.

Our choice to place local employment-to-employment transitions and local job ladders at

the center of our theory is motivated by two observations from German administrative data.

First, firms predominantly hire from their local labor market (around two-thirds of hires come

from the commuting zone a firm is located in) and a substantial share of firms’ hires (around

50%) are workers who were already employed in other firms.1 This highlights the importance

of firms’ ability to poach workers from other local firms, and therefore the importance of

firms’ competitiveness in the local labor market. Second, on the worker side, we document

that the wage growth from an employment-to-employment (EE) transition in the richest local

labor market is more than twice as large as the wage gains in the poorest location. The fact

that there is significant wage growth from switching jobs in all locations—but that, at the

same time, these job ladders are steeper in rich labor markets—suggests that search frictions

and on-the-job search are potentially important drivers of spatial inequality.
1For the detailed statistics, see Table A.2 in Appendix E.1.
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We capture these observed features in a new model, in which the sorting of heterogeneous

firms to heterogeneous locations is determined in equilibrium. Firms, which differ in pro-

ductivity, first make their location choice. Then, they hire workers in a frictional local labor

market, which is characterized by wage posting and an endogenous firm (or job) ladder. In

each local labor market, both unemployed and employed workers search for jobs, all aiming to

climb the local job ladder toward increasingly higher wages. Once matched, the worker-firm

pair produces output that depends on the productivity of both the firm and location.

Firms face a fundamental trade-off when making their location choice. On the one hand,

firms “like” productive locations with high TFP, because they boost output. These are loca-

tions with good fundamentals, which we interpret broadly; for instance, they can stem from

modern infrastructure, productive spillovers, existing input-output networks, and workers’

human capital. On the other hand, firms are hesitant to sort into such locations if many

highly productive firms also choose to locate there. The presence of other productive firms

pushes the firm into a low position on the local job ladder, which reduces its competitiveness

in the local labor market and makes it difficult to poach and retain workers. Hence, firms’

location decisions balance two considerations: local productivity and local competitiveness.

While high location productivity increases firm output and per-worker profit, fierce competi-

tion with other firms reduces a firm’s own capability to hire and keep workers, which curbs

firm size. To our knowledge, this is the first model that integrates on-the-job search with

firms’ location choices, and highlights this novel trade-off.

We derive sufficient conditions for monotone firm sorting across space. Sorting is positive—

i.e., better firms locate in more productive locations—if firm and location productivity are

sufficiently complementary in production or if local labor market frictions are sufficiently large.

Productive complementarities ensure that highly productive firms have greater willingness to

pay for land in more productive places. In turn, sufficiently large labor market frictions (i.e.,

small job-to-job flows) ensure that the competition motive is of limited importance and does

not outweigh this productivity consideration.

We show that under the conditions for monotone sorting, an equilibrium exists and is

unique. Moreover, the main sorting trade-off, as well as the sufficient conditions for sorting,

is robust to several extensions: endogenous labor mobility, endogenous location productivity

spillovers that are determined by the local firm composition, and endogenous vacancy posting.

Our theory makes precise predictions on how firm sorting affects spatial inequality. First,

positive firm sorting steepens the wage (job) ladder in more productive locations. Second,
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it leads to a stochastically better employment composition in more productive locations, so

that more workers are employed in highly productive firms that pay higher wages. Both

factors amplify the spatial wage premium of places that—due to higher local TFP—are more

productive to start with.

To quantitatively assess the importance of spatial firm sorting for spatial inequality, we

estimate our model on administrative data from Germany. A key aspect of our empirical

strategy is to separately identify firm sorting from the fundamental productivity of a location.

We prove that we can achieve identification from data on local labor shares and local value

added. First, the variation in local labor shares identifies the extent of firm sorting. Because

productive firms have more monopsony power within their local labor market, locations with

more productive firms have lower labor shares. Empirically, we document the novel fact that

the local labor share is decreasing in local GDP per capita, which is the variable we use to

rank locations. Through the lens of our model, this implies that highly productive firms are

in top-ranked locations—i.e., there is positive sorting between firms and locations. Second,

the spatial variation in local value added per worker that is not due to differences in firm

composition then pins down the fundamental productivity of each location.

We use our estimated model to better understand the sources of inequality between East

and West Germany. To gauge the importance of spatial firm sorting, we conduct a counter-

factual in which we match firms randomly to locations. We find that firm sorting can account

for between 17% and 27% of the wage gap between East/West. The East is therefore not

only disadvantaged because of poor economic fundamentals, but this weakness is amplified

by the fact that low-productivity firms tend to cluster there. As for policy, integrating our

segmented local labor markets into one market with a single economy-wide job ladder is an

effective tool for reducing spatial inequality.

Related Literature. Our project merges two strands of the literature that have largely

existed in isolation: the literature on frictional labor markets and cross-sectional wage dis-

persion and the urban literature on spatial inequality.

With respect to the literature on labor search and frictional wage dispersion (e.g., Bur-

dett and Mortensen, 1998, Postel-Vinay and Robin, 2002), two important findings are that,

conditional on worker heterogeneity, firm heterogeneity accounts for a sizable share of the

cross-sectional wage dispersion (15-30%); and that search frictions and on-the-job search do

as well (10-40%).2 Despite this evidence on the importance of firms and search for inequality,
2Using a structural model, Postel-Vinay and Robin (2002) find a contribution of firm heterogeneity to wage dispersion of
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there has been no attempt to link spatial inequality to the sorting of firms into local labor mar-

kets that are characterized by search frictions and job ladders. Our paper aims to fill this gap.

Second, there is a large literature on the sources of spatial wage inequality, with special

focus on the urban wage premium in the U.S. (Glaeser and Maré, 2001, Duranton and Puga,

2004, Gould, 2007, Baum-Snow and Pavan, 2011, Moretti, 2011); in Spain (De La Roca and

Puga, 2017); in France (Combes et al., 2008); and in Germany (Dauth et al., 2022). In

turn, Heise and Porzio (2022) analyze the East-West German wage gap using a job ladder

model and focus on worker mobility and preference frictions as the main source of the spatial

divide. In contrast to our work, what these papers do not account for is the (endogenous)

spatial allocation of firms as a driver of spatial inequality.3

A smaller but growing literature analyzes firms’ location choices but differs from ours in

focus and modeling choices. Combes et al. (2012) disentangle firm selection from agglom-

eration economies in the productivity advantage of cities by studying shifts and truncations

of local productivity distributions. Behrens et al. (2014) develop a model of worker sorting,

firm selection, and agglomeration economies to rationalize several stylized facts on the urban

wage premium. Gaubert (2018) builds a model of spatial firm sorting in which firms trade off

agglomeration economies and wage costs to analyze the efficiency impact of place-based poli-

cies. All of these papers feature frictionless labor markets.4 In turn, Bilal (2022) is the first

paper that analyzes the effect of firms’ location choices on spatial unemployment differences

in a model that features labor market frictions. In contrast to our approach, he abstracts

from on-the-job search, an ingredient that (as we will show) interacts with firm sorting in

important ways to shape spatial inequality.

2 The Model

2.1 Environment

Time t ∈ R+ is continuous and the economy is in steady state. There is a continuum of

locations (i.e., local labor markets) and a continuum of firms and workers.

Locations are indexed by ` and differ in exogenous productivity A(`). We assume that A(`)

around 30% and a contribution of search frictions of around 40% in France. Bagger and Lentz (2019) find a firm contribution
of 18%, while the contribution of the search channel is 10% in Denmark. Using a non-structural approach (two-way fixed
effect regressions), firm effects typically explain around 20% of the variance of log-earnings or slightly less when correcting
for limited mobility bias (Bonhomme et al., 2022). For instance, Card et al. (2013) find that 21% of the wage variance can
be accounted for by workplace heterogeneity in Germany, and its importance for wage inequality has increased over time.

3Dauth et al. (2022) point out that empirically, more productive firms are in German cities as opposed to rural areas,
but this is based on the distribution of AKM firm fixed effects, which conflate firm productivity with location productivity.

4Oberfield et al. (2022) analyze how firms with multiple plants sort across space in a frictionless context.
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is strictly positive for all ` and continuously differentiable, and that locations are ordered by

productivity, i.e., ∂A(`)/∂` > 0. Each location has an exogenous amount of land, distributed

with the continuously differentiable cdf R on [`, `]; r > 0 is the corresponding density.

In each location `, there is a unit mass of risk-neutral homogeneous workers who are spa-

tially immobile, something we relax below. Unemployed workers in ` receive flow benefit b(`)

and search for jobs, while employed workers receive a wage and do on-the-job search (OJS).

Firms are risk-neutral and differ in productivity p. We assume p ∼ Q(p), where p ∈ [p, p]

and Q is a continuously differentiable cdf with corresponding density q > 0. We call p the

ex ante productivity of firms, based on which location choices are made. After settling in

location `, each firm with attribute p draws ex post productivity y ∈ [y, y] from cdf Γ(y|p)

where Γ is continuously differentiable in both y and p. We assume that ∂Γ(y|p)/∂p < 0 for all

y ∈ (y, y), so that more productive firms ex ante draw their ex post productivity from better

distributions in the first-order stochastic dominance (FOSD) sense. We distinguish between

ex ante and ex post productivity so that, even with pure sorting between ex ante firm types

and locations, we obtain a non-degenerate distribution of firm productivity in each location.

In order to produce in location `, firms need to buy one unit of land at price k(`) and

post a wage to hire local workers. The returns to land accrue to a set of local landowners

who operate in the background. Firms have no capacity constraint when employing workers,

so they hire any worker that yields a positive profit. Firm y in location ` produces output

z(y,A(`)) per worker hired. We assume that z is C2 and strictly increasing in each argument.

Note that while the ex ante productivity of firms p determines the distribution of ex post

productivity y, p is irrelevant for production conditional on y. Hence, after entry, firms

are fully characterized by their ex post productivity realization y. We assume that z is the

output of the same homogeneous good in all locations, whose price is normalized to one.

All agents discount the future at rate ρ.

In each location there is a frictional labor market, in which workers and firms face search

frictions and search is random. In the baseline model, we assume that meeting rates are

exogenous and constant across locations. Firms meet workers at Poisson rate λF . Employed

workers’ meeting rate is given by λE and unemployed workers’ meeting rate by λU . Matches

are destroyed at rate δ. We also denote the meeting rates of employed workers, unemployed

workers, and firms relative to the job destruction rate by ϕE ≡ λE/δ, ϕU ≡ λU/δ and ϕF ≡

λF /δ. In our quantitative analysis we endogenize these meeting rates through endogenous

labor mobility and a local matching function.
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In terms of wage setting, we assume that firms post wages with commitment as in Burdett

and Mortensen (1998). We denote the wage paid by firm y in location ` by w(y, `). Hence,

firm y in location ` receives flow profit π(y, `) = z(y,A(`))−w(y, `) when employing a worker.

We impose the following assumptions.

Assumption 1.

1. (Common support) The distributions of ex post productivity Γ(y|p) have common support:

∀p, y ∈ [y, y].

2. (Zero profits for marginal firm type) In each location `, firms with the lowest ex post

productivity, y, make zero profits.

Together, these assumptions imply that—despite the endogenous sorting of firms across

locations—the resulting distributions of firm productivity have common support across lo-

cations, with the marginal firm y making zero profits. While not strictly necessary, part 1.

not only simplifies our analytical arguments but is also supported by the evidence.5 Part 2.

will be guaranteed by making sure that the output of the least productive firm equals the

reservation wage, i.e., wR(`) = z(y,A(`)) for all `. One way to ensure this property is by

appropriately choosing non-employment utility b(`) (a primitive) across locations.

2.2 Equilibrium

We now discuss the agents’ decisions; namely, the job acceptance decisions of workers as well

as firms’ location choice and wage-posting decision. Finally, we specify the steady-state flow

balance and market-clearing conditions.

Workers. Workers face two decisions: First, whether to accept a job offer when unemployed,

and second, whether to accept a job offer when employed. We discuss each briefly, since both

are standard.

Consider first a worker who is employed at wage w. The value of being employed at wage

w in location `, V E(w, `), solves the recursive equation

ρV E(w, `) = w+δ(V U (`)−V E(w, `))+λE
[∫ w

w
max{V E(t, `), V E(w, `)}dF`(t)− V E(w, `)

]
,

where F` is the endogenous wage-offer distribution in location ` and V U (`) denotes the value
5Using French data, Combes et al. (2012) find that firm productivity distributions across space do not vary in their left

truncation, indicating that productivity of the least productive firms is similar across locations.
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of unemployment, which is given by

ρV U (`) = b(`) + λU
[∫ w

w
max{V E(t, `), V U (`)}dF`(t)− V U (`)

]
. (1)

Note that, as is well known (and straightforward to show), V E is increasing in w, so the

optimal strategy of employed workers is to accept any wage higher than the current one.

In turn, the optimal strategy of unemployed workers is given by a reservation wage strategy.

We obtain the reservation wage from a worker who is indifferent between accepting and

rejecting a job, V E(wR(`), `) = V U (`), which—after simplifying the value functions—gives

wR(`) = b(`) + (λU − λE)

[ ∫ w

wR(`)

1− F`(t)
δ + λE(1− F`(t))

dt

]
. (2)

Note that we can always sustain our Assumption 1.2—whereby wR(`) = z(y,A(`))—based

on the appropriate choice of primitive function b(·), once F` is pinned down. For instance, in

the special case of λU = λE , b(`) = z(y,A(`)) satisfies our assumption.

Firms. Firms face two decisions. First, they choose location ` to maximize expected dis-

counted profits, taking competition from other firms and land prices as given. Second, con-

ditional on the location choice, firms post a wage to maximize profits. We solve backwards.

Wage Posting. When posting a wage, a firm in location ` trades off profit per worker

against firm size, which is given by6

l(w, `) :=
ϕF

(1 + ϕE (1− F`(w)))2 . (3)

Firms that are higher ranked in local wage distribution F` are larger—since they poach

more and are being poached less—compared with lower-ranked firms. Conversely, holding the

firm’s wage w fixed, its size is smaller if the local wage distribution, F`, is stochastically better.

Importantly, the (relative) EE rate, ϕE , governs the extent to which firm size depends on

local competition. If labor market frictions are severe, ϕE → 0, then the competition channel

is mitigated and firm size is independent of the local wage distribution.

The firm’s wage-posting problem is then to maximize per-worker profit times its size,7

6Firm size can be derived as the hiring rate times the expected match duration; here we set ρ→ 0. Taking into account a
consistency condition on λF (relating it to λE and λU ), this is equivalent to the firm size definition in Burdett and Mortensen
(1998), which is the measure of workers employed at y divided by the measure of firms with y. See Appendix A.2.

7To simplify exposition, we set ρ→ 0 for the remainder of the analysis.
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J̃(y, `) = max
w≥wR(`)

l(w, `)(z(y,A(`))− w), (4)

whereby a higher wage increases firm size but reduces flow profits.8

Equation (4) highlights the fact that location matters to firms in two distinct ways, which

already hints at their trade-off between local productivity and competition. On the one hand,

choosing a high ` increases location TFP A(`) and thus output and flow profits. On the other

hand, if many productive firms sort into high-` locations, competition is fierce (the wage offer

distribution F` is stochastically better), and the size of any given firm y becomes compressed.

The firm’s objective function (4) is supermodular in (w, y), which—in combination with

a continuum of productivity levels—implies that w is strictly increasing in y. Therefore, the

local distribution of wage offers coincides with the local distribution of firm productivity,

F`(w(y, `)) = Γ`(y), where Γ` is the endogenous productivity cdf of firms in location `. Cdf

Γ` encapsulates the spatial sorting of firms and is thus the crucial object in our model. In

what follows, we will use Γ` instead of F`.

Making this substitution, we solve the firm’s problem to obtain the well-known wage

function under wage posting (Burdett and Mortensen, 1998),

w(y, `) = z(y,A(`))−
(
1 + ϕE(1− Γ`(y))

)2∫ y

y

∂z(t,A(`))
∂y

(1 + ϕE(1− Γ`(t)))
2dt, (5)

with the exception that in our model, there is one such wage function in each location `;

it depends on both location productivity A(`) and the endogenous distribution of firms in

that location Γ`—the object we will turn to next.

Location Choice. Given the wage function for each location `, we can now specify the firm’s

location choice problem. The ex ante expected value of firm p to settle in location ` is given by

J(p, `) =

∫
J̃(y, `)dΓ(y|p)− k(`),

while taking into account that, when this choice is made, the firm still has to draw ex post

productivity y and needs to pay land price k(`) when settling in `. Using J̃(y, `) from (4)

and wage function (5), J(p, `) can be expressed as

J(p, `) =

∫ y

y

∫ y

y

∂z(t, A(`))

∂y
l(t, `)dt dΓ(y|p)− k(`). (6)

8We show in Appendix A.1 that an equivalent way of formulating the wage-posting problem is to have firms maximize
their hiring rate times their discounted flow profit.
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The expected value for firm p of settling in location ` is given by the expected value of em-

ployment net of the price of the land. Hence, when choosing their location, firms balance local

productivity A(`) (which determines output z(y,A(`))), local competition Γ` (which deter-

mines their size l(y, `)), and land prices k(`). Formally, the firm’s location choice problem is

max
`
J(p, `). (7)

The solution to problem (7) describes firms’ location decisions and is at the center of our

analysis. The FOC of this problem highlights the fundamental location choice trade-off faced

by firms and can be expressed as follows (see Appendix A.4):∫
y

y

∂ ln

(
∂z(y,A(`))

∂y

)
∂`

+
∂ ln l(y, `)

∂`

 ∂z(y,A(`))

∂y
l(y, `) (1− Γ(y|p)) dy =

∂k(`)

∂`
, (8)

where ∂ ln l(y,`)
∂` is the (semi-)elasticity of firm size wrt location ` and

∂ ln
(
∂z(y,A(`))/∂y

)
∂` is the

(semi-)elasticity of the firm’s marginal product wrt `.

FOC (8) reflects firms’ trade-off between profitability and firm size when choosing the

optimal `. Locations with higher `, by virtue of having higher productivity A(`), push up

output and thus firm profits per employee. But if these locations attract many productive

firms, competition in high-` locations is fierce; poaching and retaining workers is then difficult,

which reduces firm size. At the optimal location choice, this marginal (net) benefit of choosing

a higher ` equals its marginal cost, which is the increase in the price of land. If high-` locations

are overall more desirable, then ∂k(`)/∂` > 0, which reflects the fact that these locations

command higher land prices.

This FOC—along with land market clearing—pins down the equilibrium allocation of firms

to locations, captured by Γ`. That is, for all `,

Γ`(y) =

∫ p

p
Γ(y|p)mp(p|`)dp ∀y ∈ [y, y], (9)

where we define by m(`, p) the endogenous joint matching density between (`, p) with condi-

tional densitiesm`(`|p) andmp(p|`).9 In addition, the FOC pins down the land price schedule,

k(·), that sustains this allocation. It is obtained by solving differential equation (8), evaluated

at the equilibrium assignment (see Appendix A.5). The land price in location ` is given by
9Under a measure-preserving matching between firms p and locations `, the marginal densities of m are given by r and q.
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the cumulative marginal contributions of land to the match surplus (between firms and land)

in locations that are weakly less productive than `.10

Land Market Clearing. The land market clearing condition is given by

R(`) =

∫ `

`

∫ p

p
m(˜̀, p̃)dp̃d˜̀=

∫ `

`

∫ p

p
m`(˜̀|p̃)q(p̃)dp̃d˜̀, (10)

which ensures that the mapping between firms’ productivity distribution Q and land distri-

bution R is measure-preserving.

Good Market Clearing. In each location `, workers, firms and land owners consume their

entire income. Total income thus equals total consumption, which in turn equals total output,

so that the good market clears in each `,

∫ y

y
z(y,A(`))l(y, `)dΓ`(y) =

∫ y

y
w(y, `)l(y, `)dΓ`(y) + J̄(µ(`), `) + k(`), (11)

where we use firm size, l(y, `), defined in (3).

Flow-Balance Conditions. We have two flow-balance conditions in steady state, which pin

down the equilibrium unemployment rate and the distribution of employment in each location.

First, the inflow into and outflow out of unemployment must balance, which pins down

the unemployment rate, u(`) (which in our baseline model does not vary across `):

δ(1− u(`)) = u(`)λU ⇒ u(`) =
1

1 + ϕU
. (12)

Second, the inflow into and outflow out of employment in firms with productivity below y

must balance (for all y), where we take into account the optimal decision of employed workers

to accept the job offer of any firm that is more productive than their current one. This

determines the cdf of employment in location `, G`:

u(`)λUΓ`(y) = (δ + λE(1− Γ`(y)))G`(y)(1− u(`)) ⇒ G`(y) =
Γ`(y)

1 + ϕE(1− Γ`(y))
. (13)

Note that the outflow of workers from firms with productivity below y, G`(y)(1−u(`)), has two

sources: exogenous job destruction (driven by δ) and endogenous on-the-job search, which in-

duces workers to quit for better jobs when they find them (which happens at rate λE(1− Γ`(y))).
10In this competitive land market, firms that maximize expected profits and landowners who maximize land prices will

result in the same allocation of firms to locations, which is why we detail only one side’s decision: the one by firms.
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Steady-State Equilibrium. We can now define a steady-state equilibrium.

Definition 1. A steady-state equilibrium is a tuple (w(·, `), k(`),m(`, p),Γ`(·), l(·, `), G`(·), u(`), wR(`)),

such that for all ` ∈ [`, `] and p ∈ [p, p]:

1. Walrasian equilibrium in the land market: The pair (k(`),m(`, p)) is a competitive equi-

librium of the land market, pinning down Γ` and also l(·, `);

2. Optimal wage posting: w(·, `) is consistent with (4) for all firm types y ∈ [y, y];

3. Optimal worker behavior: Employed workers accept job offers from more productive firms;

unemployed workers accept any job y with w(y, `) ≥ wR(`), where wR(`) is pinned down by (2);

4. Flow balance conditions (12) and (13) hold, pinning down u(`) and G`;

5. Good market clearing (11) holds.

3 Equilibrium Analysis

3.1 Spatial Firm Sorting

We now analyze the patterns of firm sorting that occur in equilibrium. In particular, we pro-

vide conditions under which more productive firm types p sort into more productive locations

`. This is an allocation with positive assortative matching (PAM), which, as we show below,

is the empirically relevant case.11

Sufficient Conditions for Positive Sorting. We focus on pure assignments between (p, `),

in which any two firms of the same type are matched to the same location type (and vice

versa). Assignment mp(p|`) can then be captured by a matching function µ : [`, `] → [p, p].

We define positive sorting in a standard way.

Definition 2 (Positive Sorting of Firms to Locations). There is positive sorting in (p, `) if

matching function µ is strictly increasing.

Under positive sorting, more productive firms sort into more productive locations. More-

over, mp(p|`) has positive mass only at a single point p = µ(`), and we can simplify the

endogenous distribution of firms in location ` in (9) to12

Γ`(y) = Γ(y|µ(`)),

11For completeness, we analyze the allocation with negative assortative matching (NAM) in Online Appendix OA.1.
12CdfMp(·|`) (corresponding to densitymp(·|`)) is a Dirac measure that concentrates its mass at p = µ(`) and (9) becomes

Γ`(y) =

∫ p

p

Γ(y|p)mp(p|`)dp =

∫ p

p

Γ(y|p)dMp(p|`) = Γ(y|µ(`)).
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so that high-` locations have ex post productivity distributions that are stochastically better.

To obtain sufficient conditions for positive sorting, recall that firm p chooses location ` to

maximize J(p, `) given in (7). Based on results from the literature on monotone comparative

statics (Milgrom and Shannon, 1994), the optimal location choice is (weakly) increasing in p

if J(p, `) satisfies a strict single-crossing property in (p, `). Then, due to the assumption of

strictly positive densities r and q, µ is indeed strictly increasing. Note that strict supermod-

ularity of J(p, `) in (p, `) is sufficient for the strict single-crossing property. This discussion

leads to our first result on the sufficient conditions for positive sorting.

Proposition 1 (Spatial Sorting of Firms I). Sorting is positive in equilibrium if J(p, `) is

strictly supermodular in (p, `).

The spirit of Proposition 1 is familiar: Complementarities lead to positive sorting. We now

derive conditions that guarantee this property of J(p, `). We postulate that firms anticipate

positive sorting when making their location choices, and check that their optimal behavior

indeed induces PAM.

Recalling how J(p, `) varies with ` (see FOC (8)) and using the assumption that p shifts

Γ(y|p) in the FOSD sense, we note that the supermodularity of J(p, `)—and thus firm sorting—

is controlled by the location choice trade-off between productivity gains and competition:13

∂2J(p, `)

∂p∂`
> 0 if

∂ ln

(
∂z(y,A(`))

∂y

)
∂`︸ ︷︷ ︸

Productivity Gains

+
∂ ln l(y, `)

∂`︸ ︷︷ ︸
Competition

> 0. (14)

Whereas the local productivity gains from settling into high-` locations are positive if

production technology z is supermodular (first term in (14)), the local competition effect is

negative under positive sorting since productive firms cluster in the best locations (second

term in (14)). Positive sorting thus requires that the productivity benefits that boost profits

per worker outweigh the costs from competition that translate into lower expected firm size.

To guarantee the supermodularity of J(p, `) in (p, `) in terms of primitives, we use (14) and

the expression for firm size l(y, `) in (3) to obtain the following sufficient condition for PAM

(note that Γ` can be expressed in terms of primitives only):14

13This sufficient condition is equivalent to the supermodularity of J̃ , i.e. ∂2J̃(y, `)/∂y∂` > 0.
14When agents conjecture positive sorting, the endogenous firm distribution in location ` is given by Γ`(y) = Γ(y|µ(`)) =

Γ(y|Q−1(R(`))), where we made use of candidate equilibrium matching function µ(`) = Q−1(R(`)), derived from land
market clearing (10); see Appendix A.6. Therefore, we obtain ∂Γ`(y)

∂`
= ∂Γ(y|Q−1(R(`)))

∂p
r(`)

q(Q−1(R(`)))
< 0 (i.e., better locations

have better firms in a FOSD sense) and (15) is a condition for PAM that only depends on primitives.
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∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂`

∂z(y,A(`))
∂y

>
2ϕE

1 + ϕE (1− Γ` (y))

(
−∂Γ` (y)

∂`

)
. (15)

In order for PAM to materialize, the marginal productivity gains of settling in a better

location (LHS) have to outweigh the costs of tougher competition by highly productive firms

(RHS). Productivity gains are large if productivity differences across locations are large (the

A-schedule is steep), and when complementarities of z in (y,A(`)) are strong. In turn, the cost

of local competition that depresses firm size depends on two forces: first, on how endogenous

firm distribution Γ` varies across space and, second, on the degree of labor market frictions

ϕE that determines the impact of changes in Γ` on firm size. The cost of sorting into a high-`

region is low when λE—the rate at which employed workers meet firms—is small, since then

poaching and competition do not matter much. The cost is also low if δ is large, so that match

duration is mainly determined by workers who separate into unemployment as opposed to

quitting. In this case, hiring results predominantly from unemployment and, again, poaching

considerations carry less weight. The ratio ϕE captures both of these forces. A small ϕE

weakens the competition channel so that it does not interfere with the productivity motive

for positive spatial sorting. In the absence of on-the-job search, ϕE = 0, complementarities

in production are enough to sustain positive sorting.

Formally, we need to ensure that the minimum of the elasticity of firms’ marginal product

with respect to location (productivity channel), denoted by

εP ≡ min
`,y

∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂`

∂z(y,A(`))
∂y

,

is positive and large enough; or that the competition channel (which gains importance in a

fluid labor market when ϕE = λE/δ is large) is sufficiently weak.

Proposition 2 (Spatial Sorting of Firms II). If z is strictly supermodular, and either the

productivity gains from sorting into higher `, εP , are sufficiently large, or the competition

forces are sufficiently small (i.e., ϕE is sufficiently small), then there is positive sorting of

firms p to locations ` with p = µ(`) = Q−1(R(`)).

The proof is in Appendix B.1, where we make the statements regarding “sufficiently large

εP ” and “sufficiently small ϕE” precise. Note that under the conditions of Proposition 2,

the productivity gain from settling into high-` locations outweighs the cost from competition

13



for firms of all y-types. But—due to productive complementarities between (A, y)—the net

benefit is especially high for those firms with high y, which high ex ante productivity p

yields stochastically. Highly productive firms are thus willing to pay higher land prices,

outbidding the less productive firms in the competition for land in high-` locations. As a

consequence, positive sorting arises, whereby high-` locations have more productive firms in

a FOSD sense, ∂Γ`/∂` =
(
∂Γ(y|µ(`))/∂p

)
µ′(`) ≤ 0.

3.2 Existence and Uniqueness

We also show that when sorting is positive, a unique equilibrium exists.

Proposition 3. Assume that the conditions from Proposition 2 hold. Then, a unique equi-

librium (up to a constant of integration) exists.

The proof is in Appendix B.2. We show the existence of a fixed point in Γ` by con-

struction. In turn, uniqueness arises because, under the conditions on primitives stated in

Proposition 2, the impact of endogenous firm composition on firms’ value function leaves the

complementarity properties of J unchanged.

3.3 Illustrating the Properties of the Equilibrium

In our model, spatial firm sorting, local land prices, and location-specific wages are jointly

determined in equilibrium. Figure 1 illustrates the main properties of the equilibrium with

positive firm sorting. In the left panel, which depicts the land market equilibrium, we plot

both the matching function, µ, and the land price schedule, k, as a function of the location

index `. Positive sorting of firms is captured by the fact that µ is upward sloping: Firms

with higher ex ante productivity p are matched to locations with higher ` (and thereby higher

productivity, A(`)). Equilibrium land price schedule k sustains this allocation: Its positive

slope ensures that high-` locations are sufficiently expensive so that only firm types with the

highest willingness to pay—i.e., the most productive ones—settle there.

The right panel of Figure 1 displays the equilibrium wage schedule, w(·, `), which we also

call the local job ladder, as a function of firms’ ex post productivity y for the top and bottom

location, ` > `. Two properties stand out. First, the wage intercept is increasing in `. Second,

while more productive firms pay higher wages everywhere, the local job ladder is steeper in

high-` locations. Below, we show that the intercept reflects spatial differences in location

TFP A, whereas the differential steepness is also impacted by firm sorting.

14



Figure 1: Land Market (left) and Local Labor Market Equilibrium (right): An Illustration

Notes: The left panel displays matching function µ (blue) and land price schedule k (orange). The right panel displays
wage function w(·, `) for a high-productivity (` = ¯̀, yellow) and a low-productivity (` = `, red) location.

We will show that these qualitative features of our equilibrium strongly resemble what

we observe in the data. In our empirical and quantitative analyses, we investigate to what

extent firms sort positively across space (Figure 1, left) and the implications for cross-location

wage disparities (Figure 1, right). But before turning to the data, we clarify the relationship

between firm sorting and spatial wage inequality in theory.

3.4 Spatial Firm Sorting and Spatial Wage Inequality

We now turn to the economic implications of firm sorting. First, we highlight the link between

spatial sorting and spatial wage inequality. Second, we show that firm sorting yields distinct

testable predictions on the difference between firms’ global and local productivity ranks. We

examine both of these features in our empirical analysis below.

The Spatial Wage Premium. The differences in wage schedules across locations (right

panel of Figure 1) suggest that more productive locations pay higher wages. To systematically

investigate this issue, as well as the role firm sorting plays in it, we measure spatial inequality

as follows. We consider the average wage in location ` relative to the least productive location

`, which we call the spatial wage premium:

E[w(y, `)|`]
E[w(y, `)|`]

=
w(y, `) +

∫ y
y
∂w(y,`))
∂y (1−G`(y))dy

w(y, `) +
∫ y
y
∂w(y,`)
∂y (1−G`(y))dy

.

To illustrate the drivers of spatial inequality, we consider how this measure varies as we

increase `, comparing the average wage of more productive locations with the wage of the
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least productive one. The derivative of the spatial wage premium wrt ` is equal in sign ( s=) to

∂ E[w(y,`)|`]
E[w(y,`)|`]

∂`

s
=

∂z(y,A(`))

∂`︸ ︷︷ ︸
intercept of job ladder

+

∫ y

y

(
∂2w(y, `)

∂y∂`︸ ︷︷ ︸
steepness of job ladder

(1−G`(y))+
∂w

∂y

(
− ∂G`(y)

∂`

)
︸ ︷︷ ︸

employment composition

)
dy. (16)

There are two fundamental differences between locations ` and `: Location ` has higher

TFP, A(`), and—in our equilibrium with positive sorting—a better distribution of firms,

Γ`. These differences drive the three factors that underlie cross-location wage inequality.

The first two are displayed in Figure 1: First, higher-` locations have a higher intercept

of the wage function and thus job ladder, due to higher location TFP. Second, there is

larger spatial inequality if higher-` locations have a steeper wage function (i.e., a steeper

job ladder). This steepness is driven by their higher A (TFP) along with complementarities

between A and y in production, as well as by positive firm sorting, since tougher competition

for workers among highly productive firms bids up wages. Finally, under positive spatial

sorting, higher-` locations have better firms and hence a stochastically better employment

distribution: More employment is clustered at the upper part of the wage schedule, where

wages are higher. We summarize:

Proposition 4. Assume the conditions from Proposition 2 hold. There exists a spatial wage

premium, E[w(y, `)|`]/E[w(y, `)|`] > 1, since compared with location `, location ` has

(i) a higher intercept of the wage function, z(y,A(`));

(ii) a steeper wage function, provided that the complementarities of z in (y, `) are large enough;

(iii) a stochastically better firm, and thereby employment distribution G`.

In Appendix B.3, we make the sufficient condition on z in (ii) precise. This decomposition

of spatial wage inequality will guide our quantitative analysis below.

Detecting Firm Sorting: Global vs. Local Rank. Given the importance of spatial firm

sorting for spatial inequality in our model, a natural question is how to detect firm sorting

in the data. We show that firm sorting has distinct implications for the relationship between

the local and the global (economy-wide) productivity rank of firms.

We define the difference between firm y’s global rank and its (average) local rank as

D(y) :=

∫ `

`
Γ`(y)r(`)d`︸ ︷︷ ︸

Global Rank

−
∫ `

`
Γ`(y)

γ(y|µ(`))r(`)∫ `
` γ(y|µ(ˆ̀))r(ˆ̀)dˆ̀

d`.

︸ ︷︷ ︸
Average Local Rank
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The global rank reflects the firm’s position in the economy-wide productivity ranking. By

contrast, the local rank reflects the firm’s position in the productivity ranking of its location.

It takes into account that firms of a given type y can be found in all locations but, because of

sorting, they are more prevalent in some locations than others. We therefore average the local

rank of firm type y, Γ`(y), across locations using the density that describes the distribution

of y across space (see Appendix B.4 for the detailed derivation of the local rank).

Spatial sorting by firms has distinct implications for the shape of D. In particular, if

sorting is monotone, there is a concentration of highly productive firms in some locations and

of much less productive firms in others. As a consequence, the local rank of highly productive

firms is low relative to their global rank, which yields D > 0. The opposite is true for the

least productive firms who are surrounded by other low-productivity peers in their locations.

As a result, their local rank tends to be high compared with their global rank, with D < 0.

Finally, D(y) = D(y) = 0 because the worst (best) firm economy-wide is also the worst (best)

firm in any local labor market.

Figure 2 depictsD for a parametric example with spatial sorting that we detail in Appendix

B.4 (see also Proposition 6 in that appendix for a general statement on the shape of D under

sorting, which shows that the features of Figure 2 are common). Note that the difference

between global and local ranks is absent (i.e., D(y) = 0 for all y) if there is no firm sorting.

Figure 2: Spatial Firm Sorting and the Difference between Global and Local Productivity Ranks

y y∗ y

y

D(y)

4 Empirical Analysis

First, we empirically assess our model’s qualitative predictions on firm sorting and spatial

wage inequality. Below, we also highlight the quantitative implications for spatial inequality.
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4.1 Data and Measurement

For our individual-level analysis, we draw from linked employer-employee data (LIAB) in

Germany provided by the Research Data Centre (FDZ) of the German Federal Employment

Agency; see Appendix D.2 for details. These data have a panel dimension and are based on

workers’ social security records. We make particular use of information on wages and worker

flows. Our main sample covers the period 2010-2017.

We base our analysis on 257 commuting zones (CZ)—our local labor markets—which are

similar to US commuting zones (see Appendix D.4). They are defined for the year 2017 by

the German Federal Office for Building and Regional Planning. In Table A.1 (Appendix E.1),

we report some basic statistics, which show that average wages, firm size, and value added

differ substantially across commuting zones.

4.2 Spatial Firm Sorting and Spatial Wage Inequality: Evidence

A key question for us is to what extent firm sorting amplifies spatial wage inequality. Spatial

heterogeneity in wages is substantial. In particular, a set of local labor market fixed effects

explains more than 20% of the total dispersion of log wages (see Table A.5 in Appendix E.3).

Note that throughout, we deflate wages using a nationwide CPI.15

Our theory, and especially decomposition (16), highlights the fact that this spatial variation

in wages is impacted by differences in the local job ladder across space. Positive spatial sorting

by firms implies that productive locations attract better firms, which leads to both a steeper

job ladder and an employment distribution that is concentrated at more productive firms who

pay higher wages. Both of these forces boost spatial wage inequality.

To detect spatial sorting in the data, our model (Proposition 6 in Appendix B.4 and Figure

2) suggests a simple test: If there is monotone spatial sorting, there is an S-shaped relationship

between the difference in firms’ global and local ranks,D(y), and productivity y.16 In Figure 3,

we plot this relationship in the data. On the horizontal axis, we order firms by their global

productivity rank and categorize them into 50 equally sized bins (based on percentiles of the

global productivity distribution). On the vertical axis, we display the average of the difference

between global and local ranks for each productivity bin. The resemblance to our theoretical

result, displayed in Figure 2, is noticeable.
15This is consistent with our model, which features nominal wages (the good’s price is normalized to 1). Importantly, we

show in Table A.4 (Appendix E.3) that spatial inequality remains substantial even when adjusting for regional price deflators.
16We proxy firm productivity y by a residualized AKM firm fixed effect. The residualization aims to purge location

productivity A(`) from the fixed effect, so that it only captures firm characteristics; see Appendix D.2. Note that our
structural estimation below will allow us to directly identify firm productivity, which circumvents the need for this procedure.
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Figure 3: Difference between Global and Local Productivity Rank

Notes: Data source: LIAB-BHP. We rank firms by their residualized AKM fixed effects and group them in 50 bins
of equal size. For each bin, we measure local rank and global rank and plot the average difference, denoted by D(y).

Globally unproductive firms sort into locations with a high concentration of unproductive

competitors. Hence, their global rank is below their average local rank, i.e., D(y) < 0. In

turn, for globally productive firms, the opposite pattern arises: They co-locate with other

productive firms—i.e., within their local labor market they are relatively unproductive com-

pared to their economy-wide productivity—and therefore D(y) > 0. Recall that if there is no

spatial firm sorting, we would observe that D is a horizontal line and zero everywhere.

We now provide (indirect) evidence on how the documented firm sorting affects spatial in-

equality through its impact on local job ladders.17 To assess how local job ladders vary across

locations, we need to measure them. First, we focus on the ratio between a location’s average

wage and the wage of those who just made an unemployment-to-employment (UE) move.18

This ratio is increasing in local GDP per capita—our measure of location prosperity that or-

ders `—which suggests that workers face a steeper job ladder in high-` places (Figure 4, left).19

As a second measure of the local job ladder, we focus on the wage growth associated with an

EE transition. To assess how these gains vary across locations, we run the following regression:

wi`,t − wi`,t−1

wi`,t−1
=

257∑
`=1

β` +
257∑
`=1

βEE` EEi`,t +
257∑
`=1

βEXT` EXTi`,t + εi`,t, (17)

where wi`,t is the wage of individual i in CZ ` and month t, EE i`,t indicates that individual i

made an EE move to a job in CZ ` between months t and t− 1, and EXT i`,t indicates an EE
17In Table A.3 (Appendix E.2), we provide direct evidence for the importance of firms’ local competitiveness for their

decisions. In line with our theory (see Lemma O1 in Online Appendix OB), firms that are higher up in the local job
ladder—as opposed to the global one—have higher poaching shares; pay higher wages; and are larger.

18One advantage of this ratio is that it controls for spatial differences in location TFP A(`). Specifically, if production
function z is multiplicative, as assumed below, then A(`) cancels from this ratio for each `.

19We obtain data on local GDP per capita from the German Federal Statistical Office; see Appendix D.1.
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Figure 4: Spatial Inequality and Job Ladder Heterogeneity
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Notes: Data source: LIAB-BHP. Both panels plot a linear fit. CZs are weighted by their number of wage observations
(left) or EE moves (right), indicated by different sizes of the CZ-dots. The right panel plots βEE` across ` based on (17).

transition to a job in CZ ` from a job outside of `. The coefficients (β`, β
EE
` , βEXT` ) are CZ

fixed effects and CZ-specific returns to EE moves from within/outside the CZ, respectively.

We are interested in the effect of an EE transition within local labor market ` on wage

growth, i.e., βEE` , which we plot against ` in the right panel of Figure 4. Importantly, wage

growth is higher in high-` locations. Quantitatively, these differences are meaningful: A

single job-to-job move in the richest German local labor market increases wages by around

20%, which is more than twice as much compared with the poorest location.20 These effects

remain virtually unchanged when we also control for individuals’ age, gender, and education;

see Figure A.1 in Appendix E.3. We conclude that more productive locations indeed have

steeper job ladders, as is the case under positive firm sorting in our theory.

To get a first sense of the quantitative impact of this job ladder heterogeneity on spatial

wage inequality, we perform a statistical decomposition of the spatial wage gap in lifetime

earnings into the parts driven by (i) starting wages, (ii) wage growth due to EE moves, (iii)

wage growth during continuing job spells, and (iv) wage growth of the frequently unemployed.

We follow a single cohort from 2002 to 2017 in two regions: the poorest 25% of locations in

terms of GDP per capita and the richest 25%. We determine how much of the spatial earnings

gap that emerges 15 years into workers’ careers is due to differential EE wage growth and

thus different local job ladders. We find that 24% of spatial inequality in lifetime earnings is

due to this channel, which underscores the important role of local job ladders in the analysis

of spatial wage inequality. See Table A.6 in Appendix E.3 for details on this exercise.
20In contrast to the evidence presented in Figure 4 (left), our finding in the right panel is not subject to the concern that

there may be more human capital accumulation in high-` locations (a mechanism that is not in our model), which would
generate a positive slope in Figure 4 (left) and thus spatial wage inequality even in the absence of spatial firm sorting.
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5 Estimation

To rigorously evaluate the quantitative importance of firm sorting for spatial wage inequality,

we estimate our model. To this end, we enrich our model along four dimensions and show

that it is identified. We then discuss our estimation strategy, results, and model fit.

5.1 Bringing our Model to the Data

Setting. We make four main changes to render our model suitable for estimation while

preserving its key mechanism. First, we relax the assumption of fully immobile labor and allow

unemployed workers to settle in any location. This feature is important, since even though

we observe a high degree of local hiring, local labor markets are not perfectly segmented

in the data.21 Second, we introduce a residential housing market in each location, so that

workers now use their flow income to consume not only the final good but also housing.

Third, we introduce local amenities that can vary across space. These amenities scale the

real consumption utility of workers, which allows us to fit observed residential house prices

while ensuring that unemployed workers’ value of search is the same across space. Last, we

allow job separation rates δ to vary (exogenously) across locations.

This setting endogenizes local population size, L(`), and thereby also the local meeting

rates of workers and firms. We assume that in each location there is a labor market matching

function with constant returns to scale, so that local meeting rates are determined by local

market tightness, θ(`) = V(`)/U(`). The measure of vacancies per unit of land in ` still

satisfies V(`) = 1, since the measure of vacancies in each location equals the measure of

firms that settle there.22 In turn, U(`) = L(`)(u(`) + κ(1− u(`))) is the effective measure of

searchers per unit of land in `, impacted by the endogenous L(`). An important implication

is that firms’ and workers’ meeting rates, (λF (`), λU (`), λE(`)), as well as the unemployment

rate, u(`), can vary across locations. These location-specific meeting rates create congestion,

which is an additional channel that affects the costs of competition and thus firm sorting.

The residential housing (or rental) market features exogenous supply, h(`), in each location.

Workers have Cobb-Douglas preferences over the final good and housing. We denote the share

of income that is spent on housing (the final good) by ω (1 − ω). The income of employed
21Introducing mobility of the unemployed (as opposed to the employed) preserves the structure of our model and,

moreover, employed workers are less mobile empirically: ∼90% of them are hired from a 100 km radius around the firm.
22To see this, note that under positive sorting, each ` is chosen by a single p, where we assume that for each p, there

is a continuum of firms i s.t. 0 ≤ i ≤ q(p) with Lebesgue measure (i.e., a continuum of mass Q′(p) = q(p)). Under the
equilibrium matching p = µ(`), so the mass of firms in location ` is Q′(µ(`)) = q(µ(`))µ′(`). Combined with the fact that
in any ` the measure of firms equals the measure of vacancies, we have V(`)r(`) = q(µ(`))µ′(`) and thus V(`) = 1.
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workers is wage w(y, `) and that of unemployed workers is benefit wU (`), financed via taxes

on homeowners’ income, τ .23 Further, the government budget needs to balance

τd(`)h(`) = wU (`)u(`)L(`), (18)

where d(`) is the housing price in `, which adjusts in order to achieve housing market clearing:

h(`) = ω
wU (`)

d(`)
u(`)L(`) + ω

E[w(y, `)|`]
d(`)

(1− u(`))L(`). (19)

Housing supply h(`) equals housing demand from both unemployed and employed workers.

The population size in each `, L(`), is pinned down by the fact that in equilibrium, each worker

must be indifferent between any two locations—i.e., the value of search is equalized across space,

V U (`′) = V U (`′′) ∀`′ 6= `′′,

where V U (`), compared with (1) in the baseline model, reflects the fact that high local house

prices, d(`), low job-finding rates, λE(`), and high separation rates, δ(`), render job search in lo-

cation ` less attractive. In contrast, favorable local amenities, B(`), render it more attractive:

ρV U (`) = B(`)d(`)−ω

(
z(y,A(`)) + λE(`)

[ ∫ w

z(y,A(`))

1− F`(t)
δ(`) + λE(`)(1− F`(t))

dt

])
. (20)

If location `′, for instance, has a better wage distribution than location `′′ (causing a temporary

imbalance V U (`′) > V U (`′′)), workers will move into `′. This puts downward pressure on

market tightness (and thus workers’ meeting rates) and upward pressure on housing prices in

`′ until the difference in the locations’ attractiveness is arbitraged away. Thus, a second source

of congestion—beyond labor market congestion—stems from the residential housing market.

Importantly, despite these additions to the model, conditions similar to those in Section

3.1 guarantee the positive sorting of firms to locations; see Proposition 7 (Appendix C). The

value that determines firms’ location choices, J(p, `), is analogous to the baseline model with

one key difference: Meeting rates are now endogenous. As a consequence, local competition

has two components. It depends not only on local firm composition, Γ` (as before), but also

on local labor market congestion, captured by (λE(`), λF (`)). Both components now affect

how the firm size elasticity in (14) varies across space.
23The indirect utility of unemployed workers from consuming the final good and housing is given by wU (`)/d(`)ω, where

d(`) is the housing price in `. Thus, the flow utility of unemployed workers is given by b(`) = B(`)wU (`)/d(`)ω + b̃(`), where
amenity B(`) scales the consumption utility. We interpret b̃ as a non-monetary (possibly negative) utility component that
stems from stigma. In practice, function b̃ gives us flexibility to satisfy Assumption 1, so that wR(`) = z(y,A(`)) for all `.
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Functional Forms. As for local labor markets, we assume that meeting rates are based

on a Cobb-Douglas matching function M(V(`),U(`)) = A
√
V(`)U(`), where A is the overall

matching efficiency. Recall that U(`) = L(`)(u(`) + κ(1 − u(`)). Parameter κ is the relative

matching efficiency of employed workers, i.e., λE(`) = κλU (`).

As far as production is concerned, we assume that production function z is multiplicative

and that the ex post productivity distribution is Pareto; that is,

z(y,A(`)) = A(`)y

Γ(y | p) = 1− y−
1
p .

Based on this Pareto specification, firms with ex ante higher firm productivity p draw their

ex post productivity y from a stochastically better distribution, in line with our theory.24

5.2 Identification

Our model is parameterized by a location ranking [`, `], local TFP A(`), local amenities B(`),

local separation rates δ(`), labor market parameters (κ,A) and parameters of the housing

market (ω, τ, h(`)). We must also identify the extent of firm sorting across space, captured

by µ(`) (which in equilibrium equals p, the parameter guiding the Pareto’s tail behavior).25

The key step in our identification problem is separating the effect of firm sorting µ(`) from

local productivity A(`). Intuitively, are locations prosperous because of high fundamental

productivity or because of an advantageous firm composition? Under the assumptions of

Pareto productivity and multiplicative technology, our model allows us to separately identify

µ(`) and A(`) using the average local labor share, LS(`), and firm value added, E[z(y,A(`))|`]:

LS(`) = 1− µ(`) (21)

E[z(y,A(`))|`] = A(`)(1− µ(`))−1, (22)

where the expectation is taken over ex post firm productivity distribution Γ` (for a similar

labor share formula under the Pareto assumption in an economy with single labor market,

see Gouin-Bonenfant, 2020). These equations illustrate how firm sorting and location pro-

ductivity can be separated. Consider, first, the negative relationship between the labor share

and firm productivity, which in the multiplicative class of z is independent of A(`). Higher
24Note that we normalize the scale parameter, y = 1. We also used two methods to investigate whether the Pareto

assumption is justified (available on request): First, as a proxy for firm productivity, we use (residualized) AKM firm fixed
effects and check that the tails of their local distributions are log-linear. Second, if ex post firm productivity is Pareto
distributed in our model, then value added per employee, z, is as well—something we also check based on tail behavior.

25Given matching function µ, we can identify Q using µ(`) = Q−1(R(`)) (where we assume R is given; see below).
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ex ante firm productivity µ(`) = p leads to higher ex post productivity of firms and thereby

to a stochastically better employment distribution. Since more productive firms have more

monopsony power and thus lower labor shares, locations in which employment is concentrated

in top firms have lower average labor share.26 Variation in local labor shares across space

LS(·) thus identifies the extent of firm sorting µ(·).

Conditional on local firm composition µ(`), location fundamental A(`) can then be identi-

fied from average local value added. Specifically, the variation in value added across locations

that is not accounted for by firm sorting must be driven by differences in location TFP.

To identify the parameters of the labor market, including relative search efficiency κ and

matching efficiencyA, as well as job-separation rate δ(`), we exploit information on job-finding

rates and local unemployment. First, the relative matching efficiency of employed workers

κ is identified from their job-finding rate, relative to that of unemployed workers. Second,

we identify the local job-separation rate using the steady-state formula for unemployment, as

well as data on local unemployment and job-finding rates:

δ(`) = λU (`)
u(`)

1− u(`)
. (23)

Finally, the overall matching efficiency, A, is identified from a mix of the job-finding rate of

the unemployed, λU (`), the job-destruction rate, δ(`), and the average firm size, l(`), in any `,

A =

√
λU (`)(δ(`) + κλU (`))l(`). (24)

To identify the parameters of the housing market, we use the expenditure share of resi-

dential housing to pin down ω and the replacement rate of the unemployed to obtain tax rate

τ for residential homeowners. And based on observed house prices—along with government

budget constraint (18) and housing market clearing (19)—we can infer housing supply h(`).

Last, we identify the amenity schedule B using the indifference condition whereby workers’

value of search is equalized across space, given by (20) when imposing the normalization

ρV U = 1. We now summarize this discussion:

Proposition 5 (Identification). Under the assumed functional forms (summarized in As-

sumption 3, Appendix F), the model is identified.
26To bolster this intuition for why more productive firms have a lower labor share, we derive in Appendix I.2 (paragraph

Sufficient Conditions for ∂LS(`)/∂` < 0) a sufficient condition under which the firm-level labor share is decreasing in y for
each `. The pillar of this condition is that γ`(·) is sufficiently decreasing—a property of many distributions, including (but
not at all restricted to) the Pareto distribution—which implies that high-y firms have fewer competitors around them.
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We provide more details on the presented derivations in the proof; see Appendix F.

5.3 Estimation: Strategy and Results

For estimation, we rely on regional data from the official records of the German Federal Sta-

tistical Office, which we aggregate at commuting-zone level; see Appendix D.1 for details.

Specifically, we use employment, value added, and labor compensation, as well as unemploy-

ment rates, number of establishments, GDP, and population. In turn, for model validation,

we use the worker- and firm-level data from the FDZ as in Section 4. The time unit is 1 month.

The identification argument provides us with a concrete estimation protocol that we will

closely follow. Our implementation proceeds in seven steps. First, as in Section 4, we specify

our location unit as Commuting Zone and we rank the 257 CZs based on their log GDP per

capita—a commonly used measure of economic prosperity, which in our model is increasing in

`. Local log GDP per capita will be our discretized support {`1, `2, ..., `257} of land distribution

R. To reflect differences in the number of firms across locations in the data (so that for

aggregation we can appropriately weigh each CZ in the model), we then assign to each `j , j ∈

{1, 2, ..., 257} a probability mass r(`j) equal to its share of firms in Germany. Examples of

the highest ranked CZs are Frankfurt, Munich, and Wolfsburg (all in West Germany); among

the lowest ranked, we have Goerlitz (East) and Mansfeld-Südharz (rural East).

Second, we use (21) to obtain µ(`) from the observed labor share in `. Because our model

is stylized (e.g., it lacks noise in the firm-location matching process), we smooth any measure-

ment error in the data moments before feeding them into the model. Specifically, we linearly

fit each variable we target in estimation as a function of `. Since the labor share is decreasing

in ` (Figure 5, top left)—which we believe is a novel fact—we obtain an increasing matching

function µ (top right).27 This implies positive sorting between firms and locations, so that

high-` locations are characterized by stochastically better firm distributions.

Third, we obtain the overall matching efficiency, A, from the Germany-wide observed

matching rate, separation rate, and average firm size, using (24) (see Table A.7, Appendix

G.1). To obtain the relative matching efficiency of employed workers κ, we take into account

only those EE moves in the data that are associated with wage gains (59.7%) and set κ =

0.597 · λE
λU

, based on Germany-wide job-finding rates (λE , λU ); see Table A.7.

Fourth, to pin down the local separation rates from (23), we use local unemployment and

job-finding rates. To avoid using noisy CZ-specific job-finding rates from a small sample in
27The size of the dots in Figure 5 is proportional to the size of the CZ, as measured by its number of establishments.
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the FDZ data, we infer λU (`) in each ` from the average firm size l(`) provided by the German

Federal Statistical Office (Figure 5, second row, left).28 We then derive λE(`) = κλU (`) and

λF (`) = λU (`)/θ(`). Based on the increasing l(·), we obtain a slightly increasing λU (·), which

implies higher meeting rates for workers and lower meeting rates for firms in high-` locations

(second row, right). Furthermore, an observed unemployment rate that is strongly decreasing

in ` (Figure 5, third row, left), along with a fairly stable job-finding rate, translates into job-

separation rates that are lower in more prosperous locations (Figure 5, third row, right).29

Fifth, we estimate location TFP based on the average value added per worker across loca-

tions using (22), except that we weigh each firm type by its employment.30 Since average value

added per worker is strongly increasing in ` (Figure 5, bottom left), we obtain an increasing A-

schedule, even after controlling for firm sorting through µ (Figure 5, bottom right). To better

understand the determinants of local TFP, we project the estimated A’s on several location

factors. We find that high local TFP is associated with a low cooperate tax rate, a high share

of college educated workers, and the quality of infrastructure; see Table A.8, Appendix G.1.

Sixth, to pin down the parameters that govern residential housing markets, we target

the average rent-to-income ratio of main tenant households (and obtain ω = 0.272) and an

average replacement rate of 60%, which implies a proportional tax rate on residential landlords

of τ = 0.164 (Table A.7, Appendix G.1). Finally, we pin down local housing supply h(`),

using observed location-specific rental rates d(`); see Figure A.3 (bottom) in Appendix G.1.

Last, given (µ(`), A(`), λE(`), δ(`), d(`)) for each `, we use (20) to back out amenity sched-

ule B, which ensures that unemployed workers are indifferent between all locations. The top

panel of Figure A.3 (Appendix G.1) shows that amenities are decreasing in the location index.

Thus, even though residential housing is more expensive in high-` locations (Figure A.3, bot-

tom left), this force is not strong enough to dissuade workers from settling in those locations

with high TFP and better firms, which calls for particularly low amenities in these places.

Importantly, at no point of the estimation do we impose PAM. Given the estimation

output, we verify that the value of firm p of settling in `, J(`, p), is supermodular in (p, `),

which verifies that the positive sorting of firms into locations is indeed optimal in the model.

28Solving (24) for λU (`) while taking δ(`) = λU (`)u(`)/(1− u(`)) into account gives λU (`) = A
(
l(`) ·

(
κ+ u(`)

1−u(`)

))− 1
2 .

29As an over-identification test, Figure A.2 shows that λU (·) and δ(·), implied by our estimation, fit the data well.
30Instead of applying (22), we apply its weighted version A(`) = Eg` [z(y,A(`))|`]/

( ∫
yg` (y) dy

)
, where we observe average

value added per employee, Eg` [z(y,A(`))|`], in the data; and where we compute
∫
yg` (y) dy in the model, taking density

g` based on (13) into account, which depends on (µ(`), λU (`), δ(`)) (all objects that we pinned down above). Note that the
bottom left panel of Figure 5 is based on a linear fit of log (not level) value added to `, which is why the displayed fit of
value added against ` is not linear.
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Figure 5: Model Fit of Targeted Moments (left) and Estimated Parameters (right)
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Figure 6: Model Fit: Non-Targeted Moments

Notes: Data sources: The left panel is based on local wages from the German Federal Statistical Office; the middle and
right panels are based on worker-level wages from the LIAB-BHP. The right panel shows βEE` from regression (17). These
local (CZ-level) statistics are weighted by the number of workers, the number of wage observations, and the number of EE
moves within the CZ, respectively, indicated by different sizes of the dots. 95% confidence intervals are displayed in gray.

5.4 Model Validation

Given our estimation approach, we fit the targeted data series of local labor shares, firm size,

unemployment rates, and value added per worker by construction (Figure 5, left column).

Importantly, our model also performs quite well regarding several non-targeted features of

the data related to worker inequality and beyond.

In Figure 6, we first show the model’s performance regarding the CZ’s average wage, left

panel. Second, and more importantly, our model captures quite well both the features of

spatial wage inequality and of job ladder heterogeneity from our empirical evidence (Figure 4

of Section 4.2). In the middle panel of Figure 6, we again show the average wage in ` relative

to the average wage of UE movers. Our model underestimates the level of this statistic,

since only OJS and job ladder heterogeneity across space drive this ratio above 1, while in

the data other factors—such as human capital accumulation on the job—also fuel this wage

ratio. However, given our focus on spatial inequality, we stress that our model reproduces the

observed spatial heterogeneity in this ratio. Finally, as shown in the right panel, our model also

replicates the heterogeneity in EE wage growth across space, generated by steeper job ladders

and stochastically better employment distributions in high-` locations. We overestimate the

level of wage growth but, reassuringly, we closely match the slope across locations.

We further validate the model using three additional features of the data: (i) firm size

distribution across `, as measured by the employment concentration in the largest 25% of

firms in each `; (ii) within-location wage dispersion, as measured by the 75/25-wage gap for

each `; and (iii) land price schedule k. Figure A.4 (Appendix G.1) shows that the model fits

relatively well how these non-targeted features of the data vary across space, which is most

important for our purposes.
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The fact that our model fits well the spatial heterogeneity across commuting zones in a

variety of dimensions makes us confident that it is a suitable measurement tool for spatial

inequality in Germany and for decomposing this inequality into its driving forces.

6 The Drivers of Spatial Inequality

We now use our estimated model to decompose and understand the drivers of spatial inequal-

ity, focusing on firm sorting, on-the-job search, and spatial frictions. We concentrate on the

East-West divide in Germany.31 Our estimation revealed large discrepancies between East

and West Germany in a variety of dimensions: The East is not only disadvantaged because

of poor economic fundamentals (compare red and yellow CZs in Figure 5, bottom right) but

also because workers lack access to the most productive firms (red and yellow CZs in Figure

5, top right). We now investigate to what extent these forces shape spatial wage inequality.

6.1 The German East-West Divide Through the Lens of Our Model

More than two decades after the Berlin wall came down, inequality between East and West

Germany is still substantial; monthly nominal wages in the West exceed those in the East

by 28% (Table 1). In comparison, our estimated model predicts a 22% gap, slightly under-

estimating this non-targeted feature of the data. Table A.9, Appendix G.2, reports spatial

inequality in value added and underscores significant disparities between East and West Ger-

many beyond pay.

Table 1: Monthly Wages (in e) and West-East Inequality

Data Model

Monthly Wage, West 3491.13 3480.72
Monthly Wage, East 2731.63 2845.38
West-East Gap 27.8% 22.3%

Notes: Data source: German Federal Statistical Office. Rows 1 and 2 report the average
wage in each region and row 3 computes the percentage difference between rows 1 and 2.

6.2 The Role of Firm Sorting, On-the-Job Search and Spatial Frictions

To isolate the role of firm sorting, on-the-job search, and spatial frictions in the West-East

German wage gap, we consider several counterfactual exercises. In each, we unpack the mech-

anism behind the resulting inequality changes by analyzing how the different components of
31Online Appendix OC.3 also analyzes wage gaps between urban and rural districts.
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the spatial wage premium (16)—location differences in wage intercept, slope, and employment

composition—are affected. Throughout the counterfactuals, we maintain Assumption 1. As

a result, the overall firm distribution stays the same as in the baseline model.32

The Role of Firm Sorting. To assess the role of firm sorting in spatial inequality,

we allocate firms randomly across locations and let the local labor market equilibrium play

out. Comparison of this scenario with the baseline model tells us how much of the West-East

wage gap is because better firms settle in the West. Appendix H.1 contains the technical de-

tails of this exercise.

Table 2, column 2, shows that in the absence of firm sorting the West-East wage gap would

only be 18.8%, compared with 22.3% in the baseline model with sorting. Thus, spatial firm

sorting can account for approximately 17% of the West-East wage gap.33 Our conclusion

is that the East is hurt not only because of poor economic fundamentals (low A) but this

disadvantage is amplified by the fact that low-productivity firms cluster in those locations.

To put this into perspective, the impact of variation in location fundamentals A(·) on

spatial inequality is almost three times as large as that of firm sorting. More specifically,

when we shut down spatial differences in local TFP, A = E[A(`)], while keeping firm sorting

at its baseline level, the West-East wage gap narrows to 11.8%.

Table 2: West-East Wage Inequality—Counterfactual Models

Baseline Model No Sorting No OJS No Spatial Frictions

West-East Gap 22.3% 18.8% 10.9% 1.2%

To better understand why inequality is lower without firm sorting, we zoom into our

decomposition of the spatial wage premium given by (16). For illustration, we compare two

locations at opposite ends of the spectrum of the local TFP distribution: Wolfsburg, the top

West location, and Mansfeld-Suedharz, the bottom East location.

First, as shown in the left panel of Figure 7, the random matching of firms to locations

reduces job ladder differences across space. While the job ladder was considerably steeper in
32By not taking into account changes in firm selection in these counterfactuals, we neglect a potentially interesting

margin of adjustment. However, this approach allows us to analyze all counterfactuals in a coherent and tractable manner.
Moreover, under this approach we obtain a conservative estimate of inequality reduction in each of the counterfactuals.
Consider, e.g., our counterfactual on the role of firm sorting. There, Assumption 1 dampens the effect of firm sorting on
spatial inequality: (i) our identification of tail parameter 1/µ(`) of the firm productivity distribution is unaffected by this
assumption; (ii) if, in addition, the selection margin operated so that y(`) can vary with `, the estimated firm sorting would
be even stronger than what we currently obtained, due to an increasing y(·)-schedule; and (iii) taking an increasing y(·)-
schedule into account would flatten the estimated A-schedule, further amplifying the (relative) importance of firm sorting
in spatial inequality. We ensure Assumption 1 in the counterfactuals, i.e., wR(`) = A(`)y for all `, by adjusting b̃(`).

33Note that 17% ∼ (22.3− 18.8)/22.3.
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the top West location (red solid) compared with the bottom East location (yellow solid) at

baseline, this differential steepness shrinks when firm sorting is absent (dashed lines).

Second, the right panel highlights the role of spatial differences in employment compo-

sition. In the baseline model with firm sorting, the employment distribution in the West

first-order stochastically dominates that in the East (compare the solid cdf’s). Therefore, in

the West, employment is clustered at more productive firms that pay higher wages. Impor-

tantly, shutting down firm sorting reduces this difference and thereby inequality. However,

due to labor reallocation, the FOSD is not entirely undone by this counterfactual. Without

firm sorting the West loses some its economic appeal, which is why workers reallocate to the

East. As a result, workers’ matching rates increase in the West, propelling workers to the

top of the local job ladder faster compared with the East. Labor mobility thus alleviates the

initial negative impact on the Western employment distribution, which mitigates the effect

of firm sorting on spatial inequality.34

Figure 7: No-Sorting Counterfactual: Wages and Employment Distribution

1 1.5 2 2.5 3 3.5 4 4.5 5

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Role of On-the-Job Search. In our theory, on-the-job search (and the associated

job ladders) plays a crucial role in how firm sorting shapes inequality. To assess the quantita-

tive importance of this feature, we eliminate on-the-job search by setting the search efficiency

of employed workers to zero (κ = 0). See Appendix H.2 for details.

Table 2, column 3, shows that OJS is an important source of spatial wage inequality.

Without it, the West-East gap would only be 10.9%, versus 22.3% in the baseline model.

The main change compared with our model with OJS search is that the sorting of firms

to locations becomes largely negative, whereby the most productive firms settle in low-
34Without worker mobility, the resulting West-East wage gap would be 18.5% in this counterfactual, compared with

18.8% with mobility (Table 2). Note, however, that even without labor mobility (and thus fixed λU (·) at baseline level),
the Western employment distribution would still dominate that in the East especially because δ(·) is decreasing.
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Figure 8: No On-the-Job-Search Counterfactual: Wages and Employment Distribution
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productivity locations. The reason is that job ladders are flattened everywhere, which reduces

the relative economic attractiveness of the West and leads to a large inflow of workers into

low-` (East) locations. This drives up firms’ meeting rates λF in the East, which flips the

modularity property of J̄(p, `) to submodular and induces negative sorting.

Figure 8, which is the analogue of Figure 7, highlights the two margins through which this

counterfactual reduces the West-East German wage premium. First, the left panel shows that

local job ladders collapse everywhere—the classical Diamond paradox, whereby all workers

receive their reservation wage in the absence of OJS—which hurts especially the labor market

prospects of workers in the West. Second, as shown in the right panel, due to the switch from

positive to negative firm sorting, the employment distribution in the East now dominates that

in the West. This highlights the fact that firm sorting only amplifies spatial inequality if it is

positive. In contrast, negative firm sorting—which materializes in response to low enough κ,

that is, if OJS is weak—dampens spatial inequality.

This counterfactual emphasizes once more the importance of allowing for endogenous firm

location choices: Even though there is positive sorting between firms and locations in our

estimated model, this need not be the case when the economic environment changes.

The Role of Spatial Frictions. In our final counterfactual, we elicit the role of spatial

hiring frictions in spatial inequality. We eliminate the hiring friction firms face in the baseline

model in which they were restricted to hire on-the-job searchers only from their local labor

market. To do so, we integrate the labor market, so that the economy consists of a single

job ladder with all firms hiring from everywhere. Firms are effectively characterized by the

productivity index z = A(`)y and workers climb the global z-job ladder, facing no geographic
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constraints regarding which firms can recruit them. This is an economy that offers a remote

work option, which effectively decouples the place of residence from the place of work. Note

that this counterfactual does not change the incentives of firms to sort across space; i.e., PAM

is still in place. Technical details on the implementation are in Appendix H.3.

Table 2, column 4, shows the effect of labor market integration on the West-East wage gap.

Without spatial hiring frictions, the spatial gap shrinks to 1.2% and essentially disappears.

Our decomposition of the spatial wage premium (16) sheds light on why this premium has

become so small, with the average firm in the West paying almost the same wage as the average

firm in the East. Although local job ladders in the two regions become more similar (Figure

A.6, left, in Appendix H.3), the main driver is shifts in employment composition. While

positive firm sorting still pushes toward stochastically better employment distributions G` in

the West (fueling spatial inequality), this factor is counteracted by composition shifts that

improve employment distributions in the East (dampening inequality). These composition

shifts are due to the differential positioning of local firms on the global job ladder. In high-`

(West) locations, firms at the bottom of the local job ladder were disproportionally hurt under

labor market segmentation because they faced severe competition from highly productive firms

in their location. But—due to a high location fundamental A that increases their z on the

global job ladder—they are globally competitive under labor market integration. They gain

employment relative to more productive firms in their locations, so weight is shifting toward

less productive firms, which deteriorates G` in the West.

The opposite is true for labor markets in the East. Due to positive firm sorting, the worst

firms in those locations were shielded from tough competition under segmentation. Under

labor market integration, however, they lose employment, which shifts weight toward more

productive firms in their locations and improvesG`. Indeed, Figure A.6 in the Appendix shows

that G` in the East now stochastically dominates the employment distribution in the West,

which gives rise to the stark reduction of spatial wage inequality documented in Table 2.35

7 Robustness

In this section, we summarize several checks we perform to highlight the robustness of our

results; details are in Appendix I and Online Appendix OC.
35To put this into perspective, we also consider the counterfactual of eliminating the amenity differences across space (i.e.,

a constant B), which can be interpreted as shutting down the mobility frictions of workers. Doing so also reduces the West-
East wage gap (to 15%), but the effect is quantitatively much smaller compared with eliminating the firms’ hiring frictions.
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Positive Sorting of Firms to Locations in the Data. An important ingredient

of our estimation is the negative empirical relationship between local labor share and local

GDP per capita. This—in combination with our model feature whereby locations with more

productive firms have lower labor shares—lets us infer that there is positive sorting between

firms and locations, i.e., productive firms sort into productive places with high GDP.

First, we demonstrate that the negative empirical relationship between log GDP per capita

and local labor shares is robust to controlling for the local industry composition (column 2),

local average firm size (column 3) and local population size (column 4); see Table A.11

(Appendix I.1). If anything, the negative relationship between labor share and GDP per

capita becomes more pronounced when including these controls.

Second, we demonstrate in the model that the negative relationship between local labor

shares and local firm productivity in (21)—which allows us to infer an upward-sloping match-

ing function µ from the local labor shares that are decreasing in GDP—does not hinge on

the assumption of Pareto-distributed firm productivity. More generally, this negative rela-

tionship between local labor shares and local firm productivity arises if firm-level labor shares

are decreasing in y, because then locations with more productive firms have more mass on

low-labor-share (i.e., high-y) firms. Note that decreasing firm-level labor shares tend to arise

under firm productivity distributions with decreasing density; see Appendix I.2 for technical

details. For example, if firm ex post productivity is (truncated) log-normally distributed with

p shifting the mean productivity across space, we would also back out positive firm sorting

from our data on local labor shares (see Figure A.7, Appendix I.3). By contrast, if spatial

sorting is such that some locations have firm productivity that is simply a scaled version of

others, then our identification strategy based on labor share variation would not detect it.

These neutral shifts give rise to neither labor share variation nor spatial differences in job

ladders or returns to EE flows (Appendix I.4). Because, empirically, prosperous locations

have both lower labor shares and higher wage growth from switching jobs, we are confident

that neutral productivity shifts are not a dominant feature of the data.

Estimation Conditional on Industry. One concern is that different industries op-

erate under different technologies with different labor and capital intensities, which renders

firms heterogeneous not only in their productivity but also in their labor intensity—a feature

that is absent in our model. If industries sort across space, this could drive spatial labor share

differences even in the absence of firm sorting. We address this concern in two ways.

First, we re-estimate our model after controlling for industry in the labor share data. We
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find that firm sorting accounts for an even larger share—27%—of the West-East wage gap

(see Online Appendix OC.1 for details). This is consistent with our regression analysis above,

which revealed that the within-industry relationship between labor shares and log GDP per

capita is steeper than the unconditional one (see Table A.11, column 2).

Second, our model may be a better description of tradable industries such as manufac-

turing, where the local costumer base—a feature absent from our model—is unlikely to con-

tribute to the attractiveness of a location. We therefore repeat our estimation using data on

the manufacturing sector only; see Online Appendix OC.1. The results again remain simi-

lar to our baseline estimation, with firm sorting accounting for 24% of the West-East wage gap.

Estimation on Alternative Data Sources (FDZ). Our estimation heavily relies on

regional statistics from the German Federal Statistical Office. As these are official records,

we view them as more reliable than any regional aggregation we could perform on a smaller

sample of firms in the FDZ. As a consequence, however, our analysis draws from two different

data sources since the worker-level analysis (e.g., for model validation) requires individual-

level data from the FDZ. For robustness, we therefore also perform our estimation using only

data from the FDZ. The results remain very similar; see Online Appendix OC.2.

Other Dimensions of Spatial Inequality: The Urban Wage Premium. We com-

plement our analysis of East-West inequality with an investigation of urban-rural wage gaps

(Online Appendix OC.3). The role of firm sorting in the urban-rural wage gap is quantita-

tively similar (∼ 19%) to that in the East-West divide (Table O.5). Moreover, OJS search is

an important driver of the urban wage premium, giving rise to steeper job ladders in cities.

Positive Sorting of Firms to Locations in the Model. We generalize our model

by allowing for endogenous productivity spillovers. Instead of assuming exogenous differences

in A, we assume that locations are ex ante identical but differ ex post—after firms make

location choices—in productivity, depending on the endogenous composition of firms; i.e.,

A(`) = Ã(Γ`), with Ã′ < 0. This captures the idea of positive spillover effects from productive

firms onto all firms in a location. In Proposition O3, Online Appendix OC.4.1, we show that if

the (endogenous) location productivity advantage—along with its impact on firms’ marginal

productivity—is large enough relative to the cost of competition, then firms with high-p would

indeed settle into high-` locations, similar to the baseline model.

Finally, we endogenize vacancy creation instead of assuming that each firm has one open

vacancy at all times. In Proposition O5, Online Appendix OC.4.2, we show that also in this

case, the trade-off between productivity and competition determines firm sorting choices.
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8 Conclusion

In this paper, we argue that the endogenous sorting of firms across local labor markets is an

important contributor to spatial differences in economic performance. If productive areas are

able to attract the most productive firms, non-productive labor markets are not only hurt

through inferior location fundamentals but also lack access to productive employers.

We study firms’ location decisions in a model with spatially segmented labor markets

and on-the-job search. Our theory highlights the fact that firms face a fundamental trade-off

when deciding which labor market to enter. Holding the distribution of competing firms fixed,

productive locations are naturally more attractive. However, holding the productivity of a lo-

cation fixed, being surrounded by more productive competitors exposes firms to poaching risk

because they may lose employees quickly and have a hard time poaching workers from other

firms. The degree of firm sorting in equilibrium thus depends on the balance of these forces.

We characterize this trade-off analytically and provide sufficient conditions for positive

sorting—i.e., an allocation in which more productive firms settle in more productive locations.

We show that positive sorting emerges as the unique equilibrium outcome if firm and location

productivity are complements and labor market frictions are sufficiently large.

Using administrative data from Germany, we estimate our model to assess the degree of

firm sorting in the data and to quantify its role for spatial inequality. Our estimates show that

firm sorting is positive, with more productive firms sorting into more productive locations,

which tend to be in West Germany. Quantitatively, firm sorting can account for 17%-27% of

the West-East wage gap. Workers in the East are therefore not only harmed by poor economic

fundamentals but also because they lack access to productive firms.
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Appendix

A Derivations

A.1 Alternative Formulation of Wage-Posting Problem

Firms’ wage-posting problem (4) has an alternative formulation:

J̃(y, `) ≡ max
w≥wR(`)

h(w, `)J(y, w, `) = max
w≥wR(`)

λF δ

δ + λE(1− F`(w))︸ ︷︷ ︸
=h(w,`)

z(y,A(`))− w
ρ+ δ + λE(1− F`(w))︸ ︷︷ ︸

=J(y,w,`)

(A.1)

where h(w, `) is the hiring rate of a firm posting w in location `, and J(y, w, `) is firm y’s

discounted flow profit when posting w in that location.36 Using firm size expression (A.2)

(Appendix A.2), we obtain (4).

A.2 Firm Size

As explained in Footnote 6, we can interpret the model’s firm size as the product of the hiring

rate and the expected duration of a match, which coincides with expression (3):

l(y, `) = λF
(

λUu(`)

λUu(`) + λE(1− u(`))
+

λE(1− u(`))

λUu(`) + λE(1− u(`))
G`(y)

)
︸ ︷︷ ︸

Hiring Rate h(y, `)

1

ρ+ δ + λE(1− Γ`(y))︸ ︷︷ ︸
Expected Match Duration

= λF
(

λUδ

λUδ + λEλU
+

λEλU

λUδ + λEλU
δ

δ + λE(1− Γ`(y))
Γ`(y)

)
1

ρ+ δ + λE(1− Γ`(y))

= λF
δ

δ + λE(1− Γ`(y))

1

ρ+ δ + λE(1− Γ`(y))
(A.2)

⇒ l(y, `) = λF
δ

[δ + λE(1− Γ`(y))]2
if ρ→ 0.

Note that the matching rates of firms and workers need to be consistent with each other, that

is: λF = λUu+ λE(1− u) = λU δ
δ+λU

+ λE λU

δ+λU
= δ+λE

δ+λU
λU . Plugging this into our definition

of firm size above, we obtain l(y, `) = λU (δ+λE)
δ+λU

δ
[δ+λE(1−Γ`(y))]2

, which—when the measure of

vacancies and workers coincide in each `—is equivalent to the definition of firm size in Burdett

and Mortensen (1998), who define it as

(1− u)g`(y)

1 · γ`(y)
=

λU

δ + λU
g`(y)

γ`(y)
=

λU

δ + λU
δ(δ + λE)

(1 + λE(1− Γ`(y)))2
.

36The hiring rate of firm y in location ` is h(w, `) ≡ λF
(

λUu(`)

λUu(`)+λE(1−u(`))
+ λE(1−u(`))

λUu(`)+λE(1−u(`))
E`(w)

)
, considering that

a firm meets workers at rate λF from two pools: unemployment u(`) (they will always accept the job), and employment
1 − u(`) (they will accept if the new wage is higher than their current one). We denote the steady-state employment
distribution by E`, where E`(w) = δ F`(w)

δ+λE(1−F`(w))
(see (12) and (13)), so that h(w, `) reduces to the expression in (A.1).
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A.3 Wage Posting

Consider the firm’s expected profits from employing workers (4). By the envelope theorem:

∂J̃(y, `)

∂y
= l(w(y, `))

∂z(y,A(`))

∂y
.

And so,

J̃(y, `) = (z(y,A(`))− w(y, `))l(w(y, `)) =

∫ y

y

∂z(t, A(`))

∂y
l(w(t, `))dt+ J̃(y, `)

⇔ w(y, `) = z(y,A(`))−

∫ y

y

∂z(t, A(`))

∂y

l(w(t, `))

l(w(y, `))
dt−

J̃(y, `)

l(w(y, `))
. (A.3)

Then:

w(y, `) = z(y,A(`))−
[
δ + λE(1− Γ`(y))

] [
ρ+ δ + λE(1− Γ`(y))

]
×


∫

y

y

∂z(t,A(`))
∂y

[δ + λE(1− Γ`(t)] · [ρ+ δ + λE(1− Γ`(t))]
dt


−
[
δ + λE(1− Γ`(y))

]
·
[
ρ+ δ + λE(1− Γ`(y))

] J̃(y, `)

λF δ
. (A.4)

Plugging (A.4) into J̃ , we obtain:

J̃(y, `) = λF δ

∫
y

y

∂z(t,A(`))
∂y

[δ + λE(1− Γ`(t)] · [ρ+ δ + λE(1− Γ`(t))]
dt+ J̃(y, `),

where J̃(y; `) = l(w(y, `))(z(y,A(`))− wR(`)) = λF δ
δ+λE

1
ρ+δ+λE

(z(y,A(`))− wR(`)).

Imposing Assumption 1.2 (zero profits of the least productive firm type in each location,

J̃(y, `) = 0) and ρ = 0, we obtain wage function (5) from (A.4).

A.4 Location Choice: Firm’s FOC

The FOC of problem (7) is given by

δλF

∫ y

y

( ∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂` [δ + λE(1− Γ`(y))]2

[δ + λE(1− Γ`(y))]
4

−
∂z(y,A(`))

∂y 2
[
δ + λE(1− Γ`(y))

]
λE
(
−∂Γ`

∂`

)
[δ + λE(1− Γ`(y))]

4

)
(1− Γ(y|p)) dy =

∂k(`)

∂`
.

Using the expression of firm size l(y, `) from (3) and rearranging, this becomes (8).
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A.5 Land Price Schedule

Using integration by parts and Assumption 1.2 (i.e., zero profits of y in all `, implying

J̃(y, `) = 0) problem (7) can be expressed as

max
`

∫
∂J̃(y, `)

∂y
(1− Γ(y|p))dy − k(`).

The FOC reads ∫
∂2J̃(y, `)

∂y∂`
(1− Γ(y|p))dy =

∂k(`)

∂`
.

Solving this differential equation, when evaluated at the equilibrium assignment, yields land

price schedule k(·).

For the case with pure sorting given by matching function µ, solving for k(`) yields:

k(`) = k̄ +

∫ `

`

∫ y

y

∂J̃(y, ˆ̀)

∂y∂`

(
1− Γ(y|µ(ˆ̀))

)
dydˆ̀,

where k is a constant of integration. We anchor k by choosing k̄ such that the landowner

whose land commands the lowest price in equilibrium obtains zero.

A.6 Land Market Clearing

We can derive R(`) = Q(µ(`)) from general land market clearing condition (10),

R(`) =

∫ `

`

∫ p

p
m`(˜̀|p̃)q(p̃)dp̃d˜̀

=

∫ `

`

∫ p

p

m(˜̀, p̃)

q(p̃)

r(˜̀)

r(˜̀)
q(p̃)dp̃d˜̀

=

∫ `

`

∫ p

p

r(˜̀)

q(p̃)
q(p̃)dMp(p̃|˜̀)d˜̀

=

∫ `

`
µ′(˜̀)q(µ(˜̀))d˜̀

= Q(µ(`)),

where, to go from line 3 to line 4, we use the fact that under positive sorting Mp(p|`) is

a Dirac measure, i.e., for each ` it puts positive mass only at p = µ(`), and conjecture

µ′(`) = r(`)/q(µ(`)), which then indeed materializes.
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B Baseline Model: Proofs and Additional Results

B.1 Proof of Proposition 2

Apply integration by parts to (6) to obtain

J(p, `) = δλF

∫ y

y

∂z(t,A(`))
∂y

[δ + λE(1− Γ`(t))]
2dtΓ(y|p)

∣∣∣∣y
y

−

∫ y

y

∂z(y,A(`))
∂y

[δ + λE(1− Γ`(y))]2
Γ(y|p)dy

− k(`)

= δλF

∫ y

y

∂z(t,A(`))
∂y

[δ + λE(1− Γ`(t))]
2dt+

∫ y

y

∂z(y,A(`))
∂y

[δ + λE(1− Γ`(y))]2
(−Γ(y|p))dy

− k(`)

= δλF

∫ y

y

∂z(y,A(`))
∂y

[δ + λE(1− Γ`(y))]2
(1− Γ(y|p))dy − k(`).

To assess the conditions under which J(p, `) is supermodular in (p, `), which is sufficient

for the single-crossing property of J(p, `) in (p, `), we differentiate wrt (p, `):

∂2J(p, `)

∂p∂`
= δλF

∫ y

y

( ∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂` [δ + λE(1− Γ`(y))]2

[δ + λE(1− Γ`(y))]4

+

∂z(y,A(`))
∂y 2

[
δ + λE(1− Γ`(y))

]
λE ∂Γ`

∂`

[δ + λE(1− Γ`(y))]4

)(
−∂Γ(y|p)

∂p

)
dy.

In order for this expression to be (strictly) positive, it suffices that the integrand is positive

for all y ∈ [y, y] and strictly so for some set of y of positive measure. In turn, for this it is

sufficient that (recall that we assume ∂Γ(y|p)
∂p < 0 for all y ∈ (y, y)):

∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂`

∂z(y,A(`))
∂y

>
2λE

δ + λE(1− Γ`(y))

(
−∂Γ`(y)

∂`

)
.

Under positive sorting, there is a unique way of matching up firms’ ex ante types with

locations such that the land market clears, Q(µ(`)) = R(`); see Appendix A.6. Further,

based on our assumption of strictly positive densities (r, q), this assignment is one-to-one: µ

is strictly increasing, where the firm type p assigned to location ` is given by p = µ(`) =

Q−1(R(`)). Positive sorting then implies that the endogenous firm distribution in location `

is given by Γ`(y) = Γ(y|Q−1(R(`))) (see also Footnote 12). Hence, ∂Γ`(y)
∂` = ∂Γ

∂p
r(`)

q(µ(`)) and so

to guarantee supermodularity of J(p, `) in (p, `), we need to ensure that
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∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂`

∂z(y,A(`))
∂y

>
2λE

δ + λE(1− Γ(y|Q−1(R(`)))

(
−∂Γ(y|Q−1(R(`)))

∂p

)
r(`)

q(Q−1(R(`)))
,

which is a condition in terms of primitives. To specify bounds that make this condition hold

uniformly in (`, y), let

εP ≡ min
`,y

∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂`

∂z(y,A(`))
∂y

tP ≡ max
`,y

(
−∂Γ(y|Q−1(R(`)))

∂p

)
r(`)

q(Q−1(R(`)))
.

Note that under our assumptions and the premise of the proposition, εP exists: It is

strictly positive and bounded.

In turn, tP exists (and it is also strictly positive and bounded) since we assume that Γ(y|p)

is continuously differentiable in p where both p and y are defined over compact sets, and that

cdf’s Q and R are continuously differentiable on the intervals [p, p] and [`, `], respectively,

with strictly positive densities (q, r).

A sufficient condition for J̄ to be supermodular in (`, p) is therefore

εP > 2ϕEtP .

So, equilibrium sorting is PAM, either if εP is sufficiently large or ϕE is sufficiently small. �

B.2 Proof of Proposition 3

We want to show that a fixed point in Γ` exists and we will do so by construction. Suppose

the conditions of Proposition 2 hold, i.e., there is PAM of firms to locations.

Consider an assignment µ(`) = Q−1(R(`)), which yields a unique firm distribution across

locations Γ` = Γ(y|µ(`)) and a unique wage function (5). We will show that the pair (µ, k) is

the unique (up to a constant of integration) Walrasian equilibrium of the land market, where

k(`) = k + δλF

∫
`

`

∫
y

y

∂

(
∂z(y,A(ˆ̀))

∂y

[δ+λ(1−Γˆ̀(y))]
2

)
∂`

(1− Γ(y|µ(ˆ̀)))dydˆ̀

is the land price schedule supporting assignment µ; see Appendix A.5.

By construction, µ clears the land market. To see that it is also globally optimal, we
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analyze firms’ optimal behavior. Consider a firm with attribute p. It solves (7), i.e.,

max
`
J(p, `) = δλF

∫ y

y

∂z(y,A(`))
∂y

[δ + λ(1− Γ`(y))]
2 (1− Γ(y|p))dy − δλF

∫
`

`

∫
y

y

∂

(
∂z(y,A(ˆ̀))

∂y

[δ+λ(1−Γˆ̀(y))]
2

)
∂`

(1− Γ(y|µ(ˆ̀)))dydˆ̀− k.

To reduce notation, we define

J (p, `) := δλF

∫ y

y

∂z(y,A(`))
∂y

[δ + λ(1− Γ`(y))]2
(1− Γ(y|p))dy,

which is supermodular in (p, `) under the conditions specified in Proposition 2. Firm p thus solves

max
`

J (p, `)−
∫ `

`

∂J (µ(ˆ̀), ˆ̀)

∂`
dˆ̀− k,

with solution p = µ(`). To show that µ(`) is a global optimum, note that for any `′ < `

J (p, `)−
∫ `

`

∂J (µ(ˆ̀), ˆ̀)

∂`
dˆ̀≥ J (p, `′)−

∫ `′

`

∂J (µ(ˆ̀), ˆ̀)

∂`
dˆ̀

if and only if

J (p, `)− J (p, `′) ≥
∫ `

`′

∂J (µ(ˆ̀), ˆ̀)

∂`
dˆ̀. (A.5)

Since p = µ(`) and since J (p, `)−J (p, `′) =
∫ `
`′
∂J (p,ˆ̀)
∂` dˆ̀, it follows that (A.5) is equivalent to

∫ `

`′

∂J (µ(`), ˆ̀)

∂`
dˆ̀≥

∫ `

`′

∂J (µ(ˆ̀), ˆ̀)

∂`
dˆ̀

and this holds due to the (strict) supermodularity of J (p, `) and µ(`) ≥ µ(ˆ̀) for all ˆ̀∈ [`′, `],

which also holds strictly if ˆ̀ 6= `. Hence, firm p strictly prefers ` over ˆ̀< `. A similar argument

holds for ˆ̀> `, and hence choosing ` is the unique global optimum for p. Since p was arbitrary,

all firm types behave optimally. We have shown that the optimal µ (and thus Γ`) coincides

with the postulated µ (and thus Γ`) from above, i.e., we have constructed an equilibrium.

Note that all land is occupied, and that, for each `, land (owner) ` obtains k(`) ≥ 0.

To see that this equilibrium is unique, we first note that under our assumptions, Theorem

10.28 in Villani (2009) implies that there exists a unique optimal assignment µ, which is

deterministic. Second, the uniqueness of k(`) (up to a constant of integration) then follows

from Remarks 10.29 and 10.30 in Villani (2009). �
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B.3 Proof of Proposition 4

We show that under the conditions of the proposition, (16) is positive, due to all of its three

components being positive.

(i) follows directly from the assumptions that z is strictly increasing in A for all y, and

that A is strictly increasing in `.

(ii) follows from analyzing the cross-partial derivative of the wage function:

∂2w(y, `)

∂y∂`
= 2

(
1 +

λE

δ
(1− Γ`(y))

)
λE

δ
γ`(y)

∫ y

y

∂2z(t,A(`))
∂`∂y

(1 + λE

δ (1− Γ`(t)))2
−

∂z(t,A(`))
∂y 2λ

E

δ

(
−∂Γ`

∂`

)
(1 + λE

δ (1− Γ`(t)))3
dt

+ 2

((
λE

δ

)2
∂Γ`(y)

∂y

(
−∂Γ`(y)

∂`

)
+
λE

δ

(
1 +

λE

δ
(1− Γ`(y))

)
∂2Γ`(y)

∂y∂`

)∫ y

y

∂z(t,A(`))
∂y

(1 + λE

δ (1− Γ`(t)))2
dt.

The first line is positive under our conditions for PAM, which render the integrand positive

for all y. But the second line is ambiguous unless we impose further assumptions. Denote

Z(t, `) :=

∂z(t,A(`))
∂y

(1 + λE

δ (1− Γ`(t)))2
.

Then, for all (y, `)
∂2w(y, `)

∂y∂`
≥ 0,

if:∫ y

y

∂Z(t, `)

∂`
dt ≥ −

(
λE

δ

)2
∂Γ`(y)
∂y

(
−∂Γ`(y)

∂`

)
+ λE

δ

(
1 + λE

δ (1− Γ`(y))
)
∂2Γ`(y)
∂y∂`

λE

δ γ`(y)
(

1 + λE

δ (1− Γ`(y))
)

∫ y

y

Z(t, `)dt. (A.6)

First, note that the (weak) inequality holds for y = y.

Second, consider y > y. We obtain the following sufficient condition for (A.6):∫ y
y

∂Z(t,`)
∂` dt∫ y

y
Z(t, `)dt

≥ −
∂2Γ`(y)
∂y∂`

γ`(y)
∀(y, `),

which follows since under PAM−
( (

λE

δ

)2
∂Γ`(y)
∂y

(
−∂Γ`(y)

∂`

) )
/
(
λE

δ γ`(y)
(

1 + λE

δ (1− Γ`(y))
) )
≤ 0

in the first term on the RHS of (A.6).
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The condition on primitives ensuring this is given by

min
y,`


∫ y
y

∂Z(t,`)
∂` dt∫ y

y
Z(t, `)dt

 ≥ max
y,`

− ∂2Γ`(y)
∂y∂`

γ`(y)

 . (A.7)

The maximum on the RHS is well-defined since it is taken over a continuous function on a

compact set; moreover, the RHS is positive since ∂2Γ`(y)/∂y∂` changes its sign in y and so

the maximum is achieved at a positive value. We therefore need to assume that the minimum

on the LHS is (sufficiently) positive. Specifically, we need to rule out that the minimum on

the LHS is zero at y = y. To this end, we use L’Hospital’s rule, and obtain

lim
y→y

∫ y
y

∂Z(t,`)
∂` dt∫ y

y
Z(t, `)dt

= lim
y→y

∂Z(y,`)
∂`

Z(y, `)
=

∂Z(y,`)

∂`

Z(y, `)
> 0,

which is strictly positive under our sufficient condition for PAM (Proposition 2). Therefore,

(A.7) is sufficient for w to be supermodular in (y, `), which we can further unpack as:

min
`,y

∫ y
y
∂2z(t,A(`))

∂`∂y dt∫ y
y
∂z(t,A(`))

∂y dt
≥
(

1 +
λE

δ

)2
max

y,`

− ∂2Γ`(y)
∂y∂`

γ`(y)

+ 2
λE

δ
max
y,`

∫ yy ∂z(t,A(`))
∂y

(
−∂Γ`(t)

∂`

)
dt∫ y

y
∂z(t,A(`))

∂y dt

 . (A.8)

Note that the first term on the RHS has a well-defined maximum since we are maximizing

a continuous function over a compact set and γ` > 0 due to our assumption that γ > 0. In

turn, regarding the second term, we need to rule out that it is infinite at y = y. To this end,

we use L’Hospital’s rule, and obtain

lim
y→y

∫ y
y
∂z(t,A(`))

∂y

(
−∂Γ`(y)

∂`

)
dt∫ y

y
∂z(t,A(`))

∂y dt
= lim

y→y

∂z(y,A(`))
∂y

(
−∂Γ`(y)

∂`

)
∂z(y,A(`))

∂y

= −
∂Γ`(y)

∂`
= 0.

Thus, w is supermodular in (y, `) if (A.8) holds, i.e., if the complementarities of z in (y, `) on

the LHS of (A.8) are sufficiently large.

(iii) follows directly from positive sorting, ∂Γ`(y)/∂` ≤ 0, and the relationship between Γ`

and G` in (13). �
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B.4 Proposition and Proof: Global vs. Local Rank

We state the formal result on the behavior of D(y) that we described in the text. We maintain

the following regularity assumption.

Assumption 2. Both γ(y|p) and γ(y|p) are not constant in p.

We can then show the following results.

Proposition 6 (Firm Sorting and the Difference between Global and Local Productiv-

ity Ranks). Suppose Assumption 2 holds.

1. If there is no spatial firm sorting, Γ`′ = Γ`′′ for all `′ 6= `′′, then D(y) = 0 for all y ∈ [y, y].

2. If there is spatial firm sorting, Γ`′ 6= Γ`′′ for almost all `′ 6= `′′, then D(y) = 0 for

y = {y, y}; in turn, there exists a firm type y∗ ∈ (y, y) such that for all y < y∗, D(y) < 0,

and a type y∗∗ ∈ (y, y) with y∗∗ ≥ y∗ such that for all y > y∗∗, D(y) > 0.

Proof. Recall that, under pure monotone sorting (PAM or NAM), we define:

D(y) :=

∫ `

`
Γ`(y)r(`)d`−

∫ `

`
Γ`(y)

γ(y|µ(`))r(`)∫ `
` γ(y|µ(ˆ̀))r(ˆ̀)dˆ̀

d`.

Our definition of local rank reflects the average local rank of any given firm y:
∫ ¯̀

` Γ`(y)n`(`|y)d`,

where n`(`|y) is defined as the (endogenous) location density conditional on y,

n`(`|y) :=
n(`, y)

n(y)
=︸︷︷︸

PAM/NAM

γ(y | µ(`))q(µ(`))µ′(`)∫ ¯̀

` γ(y | µ(ˆ̀))q(µ(ˆ̀))µ′(ˆ̀)dˆ̀
=

γ(y|µ(`))r(`)∫ ¯̀

` γ(y|µ(ˆ̀))r(ˆ̀)dˆ̀
,

and where n(`, y) := γ(y, µ(`))µ′(`) = γ(y|µ(`))q(µ(`))µ′(`) is the joint pdf of (`, y) with

corresponding marginal pdf, n(y) :=
∫ `
` n(`, y)d` =

∫ `
` γ(y|µ(`))q(µ(`))µ′(`)d`; in turn, γ(y, p)

is the pdf corresponding to the joint cdf Γ(y, p).

Part 1. follows from the premise of no sorting, i.e., Γ`′(y) = Γ`′′(y) = Γ(y), ∀`′, `′′ ∈ [`, `], in

which case

D(y) = Γ(y)

(∫ `

`
r(`)d`−

∫ `

`
n`(`|y)d`

)
= 0.

Part 2., first statement, i.e. D(y) = D(y) = 0, also follows straight from the definition of D.

Part 2., second statement, follows from examining the slope of D at y = {y, y}.

47



Differentiate D wrt y to obtain

D′(y) =

∫
γ(y|µ(`)))r(`)d`

−

{(∫ (
γ(y|µ(`))2 + Γ`(y)∂γ(y|µ(`))

∂y

)
r(`)d`

) (∫
γ(y|µ(`))r(`)d`)

)
(∫
γ(y|µ(`))r(`)d`

)2
−

(∫
Γ`(y)γ(y|µ(`))r(`)d`)

) (∫ ∂γ(y|µ(`))
∂y r(`)d`)

)
(∫
γ(y|µ(`))r(`)d`

)2
}

Evaluate this expression at y = {y, y}

D′(y)
∣∣
y=y

=

(∫
γ(y|µ(`))r(`)d`

)2 − (∫ γ(y|µ(`))2r(`)d`
)∫

γ(y|µ(`))r(`)d`
=
−Varr[γ(y|µ(`))]∫
γ(y|µ(`))r(`)d`

D′(y)
∣∣
y=y

=

(∫
γ(y|µ(`))r(`)d`

)2 − (∫ γ(y|µ(`))2r(`)d`
)∫

γ(y|µ(`))r(`)d`
=
−Varr[γ(y|µ(`))]∫
γ(y|µ(`))r(`)d`

,

where Varr is our notation for the variance of a random variable, taking land distribution r into

account. Both expressions are strictly negative if Varr[γ(y|µ(`))] > 0 and Varr[γ(y|µ(`))] > 0,

which is the case under Assumption 2.

Since D starts at zero and first decreases, it is strictly negative for small y > y; and

since it ends at zero in a decreasing manner, it must be that for high y < y it is strictly

positive. Hence, there must be at least one y∗ ∈ (y, y) such that D(y∗) = 0 and at that

point D crosses zero from below. If this interior crossing is unique, then y∗ = y∗∗. In turn,

if D has several interior zeros, then the first one, y∗, and the last one, y∗∗ > y∗, share this

‘crossing-from-below’ property, proving the claim. �

Example with Unique Interior Crossing of D(·). We parameterize our model as follows:

R(`) =
`− a
b− a

, b > a > 0

Q(p) =
p− a
b− a

Γ(y|p) = yp, y ∈ [0, 1], p > 0

where ` ∈ [a, b] and p ∈ [a, b]. Thus, under PAM, µ(`) = ` and Γ`(y|µ(`)) = yµ(`) = y`. If

a = 1 and b = 2, we can solve for the zeros of D in closed form, giving the unique interior

y∗ = 0.5. The shape of D thus resembles the one in Figure 2. Note that this example does not

satisfy Assumption 2 for γ(y|p), which however is only sufficient (not necessary) for the result.
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C Quantitative Model: Labor Mobility & Residential Housing

The firms’ location choice problem has the same structure as in the baseline model, only that

in (7) they now take into account that the meetings rates vary across locations.

From the firms’ perspective, congestion—which can be measured by market tightness—is

decreasing in the endogenous population size. If the local population is large, then market

tightness is small and firm meeting rate λF (`) is high, benefitting firms. In addition, compe-

tition that stems from poaching risk is mitigated in places with a large population: The job

arrival rate for employed workers, λE(`), decreases as the population gets larger and so the

probability that firms retain workers rises.

Thus, an important question is how population size varies with `. When agents conjecture

that there is positive sorting between firms and locations, high-` locations are more attrac-

tive (due to a stochastically better wage distribution), and draw in more workers. Labor

market congestion therefore benefits firms in high-` locations, ∂λF /∂` > 0 and ∂λE/∂` < 0,

alleviating the competition channel and strengthening their desire to settle there (although

this mechanism is mitigated by congestion in the residential housing market, which prevents a

massive inflow of workers into high-` locations). As a result, positive sorting materializes more

easily than in the baseline model with exogenous meeting rates that are constant across space.

We now state our result on firm sorting under labor mobility formally. To do so, denote

the minimum of the first term on the RHS of (14) (over `, y) by εP . Assume that the labor

market matching function is given by M(V(`),U(`)) = A
√
V(`)U(`) and that workers’ flow

utility function over housing and consumption is Cobb Douglas with share parameters ω

and 1 − ω, respectively. For illustration, assume that the exogenous functions B(·) and δ(·)

do not vary with ` (i.e., B(`) = B = 1 and δ(`) = δ).

Proposition 7. If (i) z is strictly supermodular and either the productivity gains from sort-

ing into higher `, εP , are sufficiently large or the competition forces, 1/δ, are sufficiently small,

and (ii) local housing supply is elastic and proportional to labor income, h(`) ∝ E[w(y, `)|`],

then there is positive sorting of firms p to locations `.

Proof of Proposition 7. The expected value of firm p in location ` is given by

J(p, `) = λF (`)δ

∫ y

y

∫ y

y

∂z(t,A(`))
∂y

[δ + λE(`)(1− Γ`(t))]2
dtdΓ(y|p)− k(`),
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where λF (·) is an endogenous function and where we will denote more compactly:

Ĵ(p, `) := δ

∫ y

y

∫ y

y

∂z(t,A(`))
∂y

[δ + λE(`)(1− Γ`(t))]2
dtdΓ(y|p).

We can then compute the cross-partial derivative of J as

∂2J̄(p, `)

∂`∂p
=
∂2Ĵ(p, `)

∂`∂p
λF (`) +

∂Ĵ(p, `)

∂p

∂λF (`)

∂`
. (A.9)

We apply integration by parts to Ĵ(p, `) to obtain

Ĵ(p, `) = δ

∫ y

y

∂z(y,A(`))
∂y

[δ + λE(`)(1− Γ`(y))]2
(1− Γ(y|p))dy,

and then compute its derivatives:

∂

∂p
Ĵ(p, `) = δ

∫ y

y

∂z(y,A(`))
∂y

[δ + λE(`)(1− Γ`(y))]2

(
− ∂

∂p
Γ(y|p)

)
dy

∂

∂`
Ĵ(p, `) = δ

∫ y

y

( ∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂` [δ + λE(`)(1− Γ`(y))]

[δ + λE(`)(1− Γ`(y))]3

−
∂z(y,A(`))

∂y 2
(
λE(`)

(
−∂Γ`

∂`

)
+ ∂λE(`)

∂` (1− Γ`(y))
)

[δ + λE(`)(1− Γ`(y))]3

)
(1− Γ(y|p)) dy

∂2Ĵ(p, `)

∂`∂p
= δ

∫ y

y

( ∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂` [δ + λE(`)(1− Γ`(y))]

[δ + λE(`)(1− Γ`(y))]3

−
∂z(y,A(`))

∂y 2
(
λE(`)

(
−∂Γ`

∂`

)
+ ∂λE(`)

∂` (1− Γ`(y))
)

[δ + λE(`)(1− Γ`(y))]3

)(
−∂Γ(y|p)

∂p

)
dy.

Plugging these derivatives into (A.9), we can write (A.9) as a single integral. Then, a sufficient

condition for (A.9) to be positive (i.e., a sufficient condition for J(p, `) to be supermodular in

(p, `)) is that this integrand is positive for all y ∈ [y, y] and strictly so for a set of y of positive

measure. Using −∂Γ(y|p)
∂p ≥ 0, we then obtain the following sufficient condition for PAM:

∂2z(y,A(`))
∂y∂A(`)

∂A(`)
∂`

∂z(y,A(`))
∂y

>
2
(
λE(`)

(
−∂Γ`

∂`

)
+ ∂λE(`)

∂` (1− Γ`(y))
)

δ + λE(`)(1− Γ`(y))
−

∂λF (`)
∂`

λF (`)
. (A.10)
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Define εP as the minimum of the LHS (as in the baseline model). It is strictly positive under

our assumptions and the premise. Under labor mobility, the RHS depends on endogenous

market tightness θ(`) through meeting rates (λF (`), λE(`)). Thus, the sufficient conditions

for PAM from the baseline model are not readily applicable. Instead, we argue that the RHS

is bounded. Thus, (A.10) holds for a large enough εP , made precise below.

To see this, first note that θ is decreasing in `. Equivalently, λE is decreasing in ` and λF is

increasing in `. This follows from the fact that the value of unemployment is increasing in ` for

a fixed λU (and thus a fixed λE = κλU ). Recall the value of unemployment in this extension:

ρV U (`) = d(`)−ω

(
z(y,A(`)) + λE(`)

[ ∫ w

z(y,A(`))

1− F`(t)
δ + λE(`)(1− F`(t))

dt

])
.

Using the premise that h(`) ∝ E[w(y, `)], government budget constraint (18) and housing

market clearing (19), as well as (A.14), we obtain the following housing price:

d(`) ∝ ω

1− ωτ
(1− u(`))L(`) =

ω

1− ωτ
A2

(δ + κλU (`))λU (`)
.

The value of search can therefore be written as

ρV U (`) ∝
(

ω

1− ωτ
A2

(δ + λE(`))λU (`)

)−ω (
z(y,A(`)) + λE(`)

[ ∫ w

z(y,A(`))

1− F`(t)
δ + λE(`)(1− F`(t))

dt

])
.

As the wage is strictly increasing in firm productivity and thus in their local rank, we can

express this value as a function of the firm’s rank in the local productivity distribution, R,
instead of the firm’s wage rank. Set t = w(R, `). Using F`(t) = R, a change of variables yields:

ρV U (`) ∝
(

ω

1− ωτ
A2

(δ + λE(`))λU (`)

)−ω (
z(y,A(`)) + λE(`)

[ ∫ 1

0

1−R
δ + λE(`)(1−R)

∂w(R, `)
∂R

dR
])

.

(A.11)

Fixing, for the moment, λU (`) = λU and thus also λE = κλU , we can differentiate ρV U (`):

∂ρV U

∂`

∣∣∣∣
λU (`)=λU

∝ d−ω
(
∂z

∂A

∂A(`)

∂`
+ λE

∫ 1

0

1−R
δ + λE(1−R)

∂2w(R, `)
∂R∂`

dR
)
.

Denote firm y’s local productivity rank by R = Γ`(y). We apply a change of variables to wage

function (5) (with Γ`(t) = x, γ`(t)dt = dx) and take the cross-partial derivative wrt (R, `):
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w(R, `) = z(Γ−1
` (R), A(`))− [δ + λE(1−R)]2

∫ R

0

∂z(Γ−1
` (x),A(`))

∂y

[δ + λE(1− x)]2
1

γ`(Γ
−1
` (x))

dx

∂2w(R, `)
∂R∂`

= 2
λE

δ

(
1 +

λE

δ
(1−R)

)
∂

∂`

∫
Γ−1
` (R)

y

∂z(t,A(`))
∂y

(1 + λE

δ (1− Γ`(t)))2
dt. (A.12)

Suppose that Γ−1
` (R) is increasing in ` (which is true if ∂

∂`Γ` ≤ 0). In addition, suppose that,

for any given λE such that λE ≤ λE ≤ λ
E with λE = min` λ

E(`) and λ
E

= max` λ
E(`),

the integrand of (A.12), ∂z(y,A(`))
∂y /(1 + λE

δ (1− Γ`(y)))2, is also increasing in `. Both of these

statements are true under the sufficient conditions for PAM that we provide below. Thus,

the wage function is supermodular in (R, `). This ensures that ∂ρV U

∂`

∣∣
λU (`)=λU

> 0.

This, together with the fact that V U is increasing in λU (and thus λE), implies that

for the equilibrium indifference condition of unemployed workers to hold (i.e., the value of

unemployment, V U , is equalized across `), it must be that λU (and thus λE) is decreasing

in `, and so θ is decreasing in `. Thus, λF is increasing in `, rendering the second and third

term on the RHS in (A.10) negative.

It then suffices that the first (positive) term on the RHS of (A.10) is bounded. Note that

λE(·) is implicitly defined by (A.11), where, in equilibrium, V U is a number that no longer

depends on `. All functions in this expression (z, ∂w/∂R) are continuous in ` (see (A.12))

where ` ∈ [`, `], and thus λE inherits this property.

The first term on the RHS of (A.10) is thus bounded from above by

2λ
E
(
−∂Γ(y|Q−1(R(`)))

∂p
r(`)

q(Q−1(R(`)))

)
δ

.

Define

t̃P ≡ λE
(

max
y,`

(
−∂Γ(y|Q−1(R(`)))

∂p

r(`)

q(Q−1(R(`)))

))
,

which is positive and well-defined given that Γ(y|p) is continuously differentiable in p, where

both p and y are defined over compact sets, and cdf’s Q and R are continuously differentiable

on the intervals [p, p] and [`, `] with strictly positive densities (q, r).

Then, PAM obtains if εP is large enough or if 1/δ is small enough, that is, εP > 21
δ t̃
P ,

since this ensures that (i) inequality (A.10) holds; and thereby (ii) Γ−1
` (R) is increasing in `

and the integrand of (A.12) is increasing in ` (which is equivalent to the condition that makes

the integrand of ∂
2Ĵ(p,`)
∂`∂p positive), both of which we had postulated above. �
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D Data and Sample Restrictions

D.1 Administrative Regional-Level Data from the GFSO

Data Description. We obtain regional-level data from the German Federal Statistical Office

(GFSO). To be consistent with our sample from the FDZ below, we focus on the years 2010-

2017. We obtain district-level data (for 401 districts) for all years and aggregate them to

the commuting-zone level (there are 257 CZs), using a crosswalk provided by the Federal

Office for Building and Regional Planning of Germany (Bundesinstitut für Bau-, Stadt- und

Raumforschung—BBSR). Finally, we take (simple) averages across years to obtain one value

for each variable per commuting zone. If applicable, we adjust the variables to the monthly

level, again for consistency with our FDZ sample.

Defining Important Variables.

Labor Compensation. Total labor compensation in a commuting zone at year t is defined as

Labor Compt =
Total hours worked by total workforcet

Total hours worked by employeest
× Comp of Employeest,

and compensation of employees consists of gross wages and salaries as well as employers’

actual and imputed social contributions. We divide by 12 to obtain the monthly statistic.

Value Added per Worker. The monthly gross value added per worker is calculated as the

ratio of (annual) gross value added and total employment, divided by 12.

Labor Share. We construct the local labor share as the ratio between labor compensation

and gross value added in each commuting zone.

Average Wage. The average monthly wage of a commuting zone is defined by total (annual)

labor compensation divided by total employment, divided by 12.

Average Firm Size. We define average firm size of a commuting zone by the total number

of employees over the total number of establishments.

GDP per Capita. We take the ratio of (annual) GDP and population in each commuting

zone; then divide by 12 to get the monthly figure. GDP corresponds to the gross value added

of all sectors of the economy plus taxes on products, but excluding subsidies on products.

Unemployment Rate. We first use unemployment rates and number of unemployed workers

at the district level to obtain the number of people who are in the labor force in each district.

We then sum by commuting zone the number of unemployed workers as well as the number

of people in the labor force and divide them to obtain the local unemployment rate.
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Rent-to-Income Ratio. We use the Germany-wide rent-to-income ratio of the main tenant

household.

Trade Tax Rate. The trade tax (Gewerbesteuer) is levied on the adjusted profit of corpora-

tions. It is a combination of base rate (universal to all municipalities, 3.5%) and a municipal

tax rate (which is a multiplier to the base rate and at the discretion of each municipality). We

focus on the municipal tax rate and refer to it as trade tax rate. We first aggregate municipal

tax rates to the district level and then to the CZ level using population weights.

Share of Employees with a Degree. We take the ratio of employees with an academic degree

and all employees subject to social security contributions at the place of work.

Net Business Registration Intensity. We define net business registration intensity at the CZ

level as the balance between business registrations and de-registrations per 1,000 inhabitants.

D.2 Administrative Worker- and Firm-Level Data from the FDZ

Data Description. We draw from the Linked Employer-Employee Data (LIAB) provided by

the Research Data Centre (FDZ) of the German Federal Employment Agency at the Institute

for Employment Research. For more information, see Ruf et al. (2021a) and Ruf et al. (2021b).

The LIAB data links information on establishments from the IAB Establishment Panel

(EP), a representative annual establishment survey, with information on all individuals em-

ployed at those establishments.37 Surveyed establishments (the ‘panel cases’) are followed

between 2009-2016 and we observe individual-level information for all their employees. This

individual-level data, which includes workers’ gender, education, full-time employment sta-

tus, gross daily wages and work district, is assembled from official social security records.

Moreover—from the Establishment History Panel 7518 (BHP), which we describe below—we

observe basic information for any employer in those workers’ entire employment history be-

tween 1975 and 2018. We call this dataset LIAB-BHP. While the original data is in a spell

format, we transform it into a monthly panel.38 We augment these datasets with the BHP,

a 50% random sample of all German establishments with at least one employee subject to

social security as of June 30 in any given year. In addition to standard information like total

employment, average wages, sales or costs of inputs, it contains total inflows and outflows of

workers at the establishment level.

37Because we only observe data at the level of the establishment, we use ‘establishments’ and ‘firms’ interchangeably.
38If a new spell starts in the middle of a month, we assign the month to the longest spell within the month.
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Sample Restrictions. Our baseline sample pools the years 2010-2017.39 We focus on full-

time employees. We drop establishments with less than 5 employees and establishments whose

mean real daily wage across the sample period is lower than 15 Euros, measured in 2015 euros

(this wage restriction is based on Card et al. (2013)). We use various datasets from FDZ:

LIAB, LIAB-BHP, BHP and EP.

Defining Important Variables.

Monthly Real Wage. To compute an individual’s monthly real wage, we multiply daily

wages by 30, and deflate these nominal wages using the German CPI (Table 61111-0001 in

the GENESIS database of the Federal Statistical Office). The CPI base year is 2015. Data

Source: Establishment History Panel (BHP).

Value Added per Full-Time Employee. We measure value added at the firm-level as the

difference between sales and input costs as reported in the Establishment Panel, divided by

the number of full-time employees. See also Bruns (2019). We deflate these variables using

the same CPI as above. Data Source: Establishment Panel (EP).

Employment-to-Employment (EE) Transition. We say a worker made an EE move in

month t in any of the following scenarios: (i) if they were employed at some establishment in

month t−1 and are employed at a different establishment in month t; (ii) if they are employed

at some establishment in month t−3 (or t−2) and disappear from the sample during months

t − 2 and t − 1 (or only t − 1) without claiming unemployment benefits, and are employed

again at a different establishment in month t. In this second scenario, we consider it likely

that the new job was already lined up when the worker left the previous one. Data Source:

Linked Employer-Employee Data (LIAB).

Unemployment-to-Employment (UE) Transition. A worker made a UE move in month t

if they were unemployed—that is, collecting unemployment benefits—in month t− 1 and are

employed at some establishment in t. Data Source: Linked Employer-Employee Data (LIAB).

Employment-to-Unemployment (EU) Transition. A worker made an EU move in month t

if they were employed at some establishment in month t−1 and are (officially) unemployed in

t or permanently disappear from the sample (we exclude December 2017 from this count, since

it is the last month in our panel). Data Source: Linked Employer-Employee Data (LIAB).

Labor Market Transition Rates. In our regression analysis, we construct measures of work-
39The reason is that for some parts of the empirical analysis we use the establishment-level fixed effects, provided by the

FDZ for all establishments in the LIAB-BHP. These are estimated by Card et al. (2013) for the period 2010-2017 using the
methodology developed in Abowd et al. (1999).
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ers’ monthly transition rates from the data: We proxy the contact rate of employed workers

λE by the realized EE transition rate in the data. For the contact rate λU and the rate of

job destruction δ—since in the model, unemployed workers accept all offers and separations

to unemployment are exogenous—they are equal to the realized rates. Specifically, in each t:

λEt =
# Employed workers in t− 1 working in another firm in t

# Employed workers in t− 1

λUt =
# Unemployed workers in t− 1 who are employed in t

# Unemployed workers in t− 1

δt =
# Employed workers in t− 1 who are unemployed in t

# Employed workers in t− 1
.

We measure these flows at the monthly frequency in each local labor market and then take

the average over years 2010-2017 to obtain one number per local labor market. Data Source:

Linked Employer-Employee Data (LIAB).

Firm Productivity y. Measuring y empirically is complicated by the fact that firms—

according our theory—are sorted spatially and, thus, their output z and wages w depend not

only on their productivity y but also on location productivity A(`). Therefore, we cannot

readily rank firms by either of these observable (wage or value added) statistics. In our

structural estimation below, we show that we can identify firm productivity separately from

location productivity. In turn, to obtain a measure of y for our reduced-form exercises,

we implement the following procedure. Our starting point is the firm fixed effects from a

standard two-way fixed effects wage regression, provided by the FDZ for all establishments in

the LIAB-BHP. These are estimated by Card et al. (2013) for the period 2010-2017 using the

methodology developed in Abowd et al. (1999) (henceforth, AKM). Using these fixed effects,

we control for the effect of worker sorting across firms or locations, which is not present in

our theory. But we still have to disentangle the effect of y from that of A(`). To control for

location productivity A(`), we regress firm-level fixed effects on the average value added per

worker in their location, and consider the residual of this regression as a proxy for y.

Poaching Share. To measure job flows and poaching at the firm level, we follow Moscarini

and Postel-Vinay (2018) and Bagger and Lentz (2019) and measure firms’ poaching shares,

which we define as the ratio of EE inflows relative to all inflows.40 Given our focus on local

labor markets, we also compute firms’ share of EE inflows and UE inflows that are local, i.e.,

from within the same commuting zone. Data Source: LIAB-BHP.
40In the terminology of Moscarini and Postel-Vinay (2018) and Bagger and Lentz (2019), this object refers to the poaching

inflow share and the poaching index, respectively.
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D.3 Variables from Other Data Sources

Residential Housing Prices. We use residential rental rates predicted for the centroids of postal

codes (provided to us by Gabriel Ahlfeldt based on Ahlfeldt et al. (2022)) and aggregate them

to the commuting-zone level. The model counterpart is d(`) for each CZ `.

Replacement Rate. We use the unemployment insurance net replacement rate. This vari-

able is based on data from the Out-of-Work Benefits Dataset (OUTWB), provided as part of

the Social Policy Indicator (SPIN) database (Nelson et al., 2020). Depending on household

composition and earnings, replacement rates vary and we take 60% as a reference point.

Commercial Real Estate Prices. We use price data (EUR/m2) for commercial proper-

ties 2012/13 from the German Real Estate Association (Deutscher Immobilienverband). We

aggregate prices from the city to the commuting-zone level. The model counterpart is k(`).

Distance to Highway. Distance to highway is proxied by the area-weighted average car

driving time to the next federal motorway junction in minutes. We obtain this variable from

the German Federal Office for Building and Regional Planning. Data is available only for 2020.

D.4 Defining Locations

Local Labor Markets. We consider 257 commuting zones (Arbeitsmarktregionen)—our local

labor markets. These are defined for the year 2017 by the Federal Office for Building and Re-

gional Planning of Germany (Bundesinstitut für Bau-, Stadt- und Raumforschung—BBSR).

East-West. We categorize commuting zones into East or West Germany based on whether

the districts they consist of belong to Eastern or Western states. Many commuting zones

contain more than one district; however, there are no commuting zones containing districts

from both East and West Germany. We omit Berlin from our sample.

Urban-Rural. We categorize commuting zones into Rural or Urban based on their districts.

To classify a district as Urban or Rural, we use the classification provided by the BBSR for

the year 2018 (we use the 2017 definition of commuting zones and the 2018 definition of

Urban/Rural because the 2017 definition of Urban/Rural has more than two categories, e.g.,

‘Mostly Rural’, which would require more choices on our end). When a CZ is formed by

districts that are all rural, we classify the CZ as Rural. When a CZ has at least one district

that is urban, we classify it as Urban (note that there are only 27 commuting zones that have

both urban and rural districts, the remaining 230 CZs are unambiguous).
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E Empirical Analysis

E.1 Local Labor Markets

In Table A.1, we report aspects of the cross-sectional distribution of economic outcomes

across local labor markets in Germany. In Table A.2, we give information on firms’ poaching

behavior, both at the firm level (Panel 1) and at the local level (Panel 2).

Table A.1: Spatial Heterogeneity: Distribution of Key Statistics

Mean S.D. P10 P25 P50 P75 P90

Average Wages 3,132.72 400.87 2,617.73 2,849.02 3,092.29 3,361.76 3,661.95
Average Value Added 4,640.04 687.55 3,911.31 4,204.93 4,525.91 4,871.12 5,518.41
Average Firm Size 11.13 1.68 9.28 10.07 11.02 12.14 12.99
Share Emp. Top 10% 0.56 0.06 0.49 0.52 0.55 0.59 0.63
Population Density 292.20 421.55 83.29 109.94 164.73 272.41 589.32
Population 317,149 420,183 92,979 127,139 190,745 325,078 596,007

Notes: Data source: German Federal Statistical Office for all variables except ‘share of employment of the largest 10% of firms’
(Share emp. top 10%), which we compute from the BHP (using full-time employees only). Displayed statistics are computed
at the commuting-zone level, and so the number of observations is 257. Mean (S.D.) is the average (standard deviation) of
each variable across 257 commuting zones. P10 -P90 are the percentiles of their distributions. Wages and value added are
reported at the monthly level, in 2015 Euros. See Appendix D.1 for more details on how the displayed variables are defined.

Table A.2: On-the-Job Search and Local Labor Markets

Mean S.D. P10 P25 P50 P75 P90

Firm level (N = 5,895)

Poaching Share 0.51 0.12 0.35 0.44 0.52 0.60 0.63
Share of local EE 0.70 0.17 0.47 0.62 0.73 0.81 0.88
Share of local UE 0.55 0.22 0.31 0.42 0.54 0.70 0.83

Commuting-zone level (N = 257)

Poaching Share 0.49 0.05 0.42 0.46 0.49 0.53 0.55
Share of local EE 0.69 0.09 0.57 0.64 0.70 0.76 0.79
Share of local UE 0.58 0.11 0.45 0.52 0.60 0.66 0.69

Notes: Data source: LIAB-BHP, restricted to panel cases. In Panel A (Panel B) we
report the statistics at the firm level (commuting-zone level). To aggregate the firm-
level outcomes to the commuting-zone level, we weigh firms by total employment. The
commuting-zone level statistics are weighed by the number of establishments in that
location. EE and UE flows as well as Poaching Share are defined in Appendix D.2.
Share of ‘local’ EE or UE transitions means that we divide worker transitions within a
given commuting zone by total transitions to firms in that commuting zone.

E.2 Local Job Ladders and Firm-Level Outcomes: Empirical Evidence

We provide direct evidence on the importance of firms’ local competitiveness for their outomes.

Our theory predicts that there is a systematic relationship between firms’ local competitive-
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ness, captured by firms’ local rank Γ`(y), and several firm-level outcomes. As we show in

Lemma O1 (Online Appendix OB), firm-level wages w, net poaching shares nE and size l

are all increasing in Γ`(y). We now assess these predictions empirically by considering the

specification

lnDf,` = α+ βΓ`(yf ) +X ′f,`γ + εf,`, (A.13)

where yf is productivity y of firm f , Df,` denotes the dependent variable (either nE(yf , `)—

see (O.2) in Online Appendix OB for the definition—or l(yf , `) or lnw(yf , `)); Γ`(yf ) is the

local productivity rank of firm f in location `; and Xf,` is a vector of additional controls.

In Panel A of Table A.3, we show the estimation results of (A.13) for firm-level net

poaching share nE(yf , `). Consistent with our theory, there is a strong positive correlation

between a firm’s net poaching share and its local productivity rank (column 1). In columns

2 and 3, we control for additional firm-level characteristics and a labor-market fixed effect.

In column 4, we predict the net poaching share by the firm’s global rank (instead of its local

rank). Again, there is a positive relationship owing to the positive correlation between global

and local ranks. In the last column, however, which controls for both the local and global

rank, the global rank loses much of its predictive power—in line with our theory.

Panel B of Table A.3 focuses on the determinants of firm size l(yf , `). The structure is

identical to Panel A. The first three columns again show a strong positive relationship between

a firm’s size and its local rank. In particular, as in the case of the net poaching share, the

relationship between firm size and the local rank vs. the global rank is similar (columns 3-4).

But column 5 shows that the local, not the global, rank is the main predictor of firm size.

Finally, in Panel C, we study firm-level (log) wages lnw(yf , `). Again, we find a strong

positive correlation with the local productivity rank (columns 1 and 2), which also holds true

within local labor markets (column 3). The last column shows that the distinction between

the local and global productivity rank is less clear cut. Our theory explains why. Consider

two firms with the same global rank (same y) who are in two different markets `′ < `′′. The

firm in market `′ has a higher local rank (due to overall worse firm composition in that market

under PAM), but given `′ < `′′, it also faces A(`′) < A(`′′). Thus, conditional on the firm’s

global rank, its local rank is negatively related to local wages due to this TFP effect.

59



Table A.3: The Local Rank and Firm-Level Outcomes

(1) (2) (3) (4) (5)

Panel A: Net poaching share (N = 368, 331)

Local Rank 0.25*** 0.18*** 0.18*** 0.13***
(0.01) (0.00) (0.00) (0.01)

Global Rank 0.17*** 0.05***
(0.00) (0.01)

Panel B: Normalized log full-time employees (N = 393, 567)

Local Rank 2.96*** 2.37*** 2.30*** 2.35***
(0.11) (0.08) (0.06) (0.26)

Global Rank 2.22*** 0.02
(0.07) (0.27)

Panel C: Log real wage of full-time employees (N = 393, 567)

Local Rank 1.19*** 0.94*** 0.94*** 0.04
(0.02) (0.02) (0.02) (0.04)

Global Rank 0.97*** 0.94***
(0.01) (0.04)

Controls N Y Y Y Y
Location FE N N Y N N

Notes: Data source: LIAB-BHP. Observations are at the firm level. Standard errors clustered
by commuting zone are in parentheses. Global (local) ranks describe the rank of each firm in the
global (local) distribution of firm productivity, proxied by the residualized AKM firm fixed effects
(see Appendix D.2 for details). Regressions (except Panel B) are weighted by mean (across years)
number of full-time employees. Firm size in panel B is measured relative to the firm size of the
5th percentile in the local firm size distribution. All panels control for the CZ-level unemployment
rate and 3-digit industry fixed effects. Panel C additionally controls for the CZ-level log real value
added and the mean share of full-time and marginal employees.

E.3 Spatial Wage Inequality

Real Spatial Wage Inequality versus Nominal Spatial Wage Inequality.

Table A.4: Spatial Inequality (Monthly, e): Real versus Nominal

German CPI Local CPI
Wage Value Added Wage Value Added

West-East Inequality

West 3491.13 5237.02 3704.85 5552.25
East 2731.63 4045.24 3122.56 4624.49
West/East 1.28 1.30 1.19 1.20

Urban-Rural Inequality

Urban 3510.01 5270.60 3701.94 5552.52
Rural 2984.37 4429.01 3372.72 5007.15
Urban/Rural 1.18 1.19 1.10 1.11

Notes: Data source: German Federal Statistical Office. With some abuse, we denote by
‘Nominal’ those variables that are deflated using the Germany-wide CPI in 2015; and by
‘Real’ we denote the variables that are deflated using the Local CPI, i.e., using commuting
zone-level price deflators (computed from district-level price deflators from BBSR).
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Wage Variance Decomposition.

Table A.5: Variance Decomposition of Log Wages

Total Location FE Residual

Variance 0.341 0.071 0.270
Share in % 20.90 79.10

Notes: Data Source: LIAB. N =72,632,961. We run a regression of individual-level
log wages on location (CZ) fixed effects and compute the variance of the estimated
fixed effects and the variance of the residuals (first row). We then compute the shares
of these variances in the total wage variance (second row).

Wage Growth due to EE Transitions: Robustness. We provide some robustness on

regression (17), by showcasing how the coefficients of interest change if we include additional

controls: age, education and gender. In Figure A.1 we plot, on the horizontal axis, the de-

meaned estimated coefficients based on (17) (labeled ‘No Controls’) and, on the vertical axis,

the demeaned estimated coefficients based on an augmented regression that controls for indi-

cator variables for age bins, education, and gender (labeled ‘Controls’). Since the coefficients

of the baseline and augmented regression line up along the 45 degree line, our results from

Figure 4 do not appear to be driven by omitting these variables from the baseline regression.

Figure A.1: Wage Growth due to EE Transitions: Robustness

Decomposition of Life-Time Earnings. In this exercise, we study the impact of het-

erogeneous job ladders across space on spatial inequality in life-time earnings. We compare

life-time earnings in two regions, ‘rich’ and ‘poor’ locations (where ‘rich’ and ‘poor’ locations

refer to the top and bottom 25% commuting zones in terms of GDP per capita). We focus

on a single cohort of workers in each region: They are 25-30 years old in 2002, and we follow

them over 15 years, from 2002 to 2017. We restrict the sample to those workers who remain

in the region where we first observe them.
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First, we measure the average starting wages of workers in rich and poor locations, before

they begin climbing the job ladder. Second, we compute average wages of workers in each

region after 15 years. Third, we decompose the total average wage growth within regions into

three parts: (i) the average wage growth of workers who never changed jobs nor experienced

unemployment for more than four months (i.e., the ‘stayers’), (ii) the average wage growth of

workers who changed jobs at least once and did not experience unemployment for more than

four months (i.e., the ‘EE movers’), and (iii) the average wage growth of workers who have

been unemployed at least once for more than four months (which we call the ‘unemployed’).

Average wage growth of a region is equal to the weighted average of wage growth in these

three categories, with the weights being equal to the number of workers in each category.

This decomposition of average wage growth allows us to assess the contribution of het-

erogeneous job ladders across space to spatial wage inequality as follows. We compute wage

growth in rich locations imposing the (counterfactual) wage growth of EE movers from poor

locations, while keeping the number of EE movers fixed. This way, we get a measure of

life-time income inequality across space keeping job ladders the same across regions.

The results are in Table A.6. If poor and rich regions had the same job ladder, spatial

inequality in life-time income would be 24% percent lower than under the heterogeneous job

ladders that we see in the data, i.e., the rich region would be characterized by 41.6% higher

wages than the poor one, instead of the observed 54.8%.

Table A.6: Decomposition of Life-Time Earnings in Top and Bottom 25% of Local Labor Markets

Top 25% Bottom 25%

Wage Growth (total) 0.916 0.633
Wage Growth of Stayers 0.854 0.642
Wage Growth of Unemployed 0.680 0.566
Wage Growth of EE Movers 1.052 0.655
Starting Wage 3036.18 2301.67
Wage after 15 Years 5817.34 3758.63

After-15-years Spatial Wage Inequality (data) 1.548
After-15-years Spatial Wage Inequality under the Same Job Ladder (counterfactual) 1.416

Contribution of Job Ladder Differences to Spatial Wage Inequality 0.241

Notes: Data source: LIAB. Top and bottom 25% of local labor markets (CZs) are categorized based on GDP per capita. The last row
reports the percentage difference between the actual (row 7) and counterfactual (row 8) spatial wage inequality 24% ∼ (54.8−41.6)/54.8.
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F Identification

We prove identification of our model under the following assumption:

Assumption 3. We assume the following functional forms and normalizations:

1. The labor market matching function is given by M(V(`),U(`)) = A
√
V(`)U(`).

2. Workers’ flow utility function over housing and consumption is Cobb Douglas with share

parameters ω and 1− ω.

3. The ex post firm productivity distribution is given by Γ(y | p) = 1− y−
1
p .

4. The production function is given by z(y,A(`)) = yA(`).

5. R is given.

6. Normalize ρV U = 1.

Proof of Proposition 5. We need to identify the ranking of locations [`, `]; functions

(Q, A, B); the tail parameters p of the ex post productivity distribution; the separation

rate schedule δ; the relative matching efficiency κ and the overall efficiency of the matching

function A; as well as the parameters pertaining to the housing market (ω, τ, h).

First, we can assign ` ∈ [`, `] to each location, based on any observed statistic that—

according to our model—is increasing in `.

Second, µ(`) (and thus p = µ(`)) can be obtained from a location’s labor share, LS(`) =

1−µ(`). That is, under goods’ market clearing, aggregate output in ` equals aggregate wages

plus profits and land prices in equilibrium

∫ y

y

z(y,A(`))l(y, `)dΓ(y|(µ(`)) =

∫ y

y

w(y, `)l(y, `)dΓ(y|(µ(`))+ϕF
∫ y

y

∫ y

y

A(`)

[1 + ϕE(1− Γ(t|`))]2
dtdΓ(y|(µ(`))

=

∫ y

y

w(y, `)l(y, `)dΓ(y|(µ(`)) + ϕF
∫ y

y

A(`)

[1 + ϕE(1− Γ(y|(µ(`)))]2
(1− Γ(y|(µ(`)))dy,

where we use integration by parts for the second line. Thus, the labor share is given by:

LS(`) :=

∫ y
y w(y, `)l(y, `)dΓ(y|(µ(`))∫ y

y z(y,A(`))l(y, `)dΓ(y|(µ(`))
= 1−

ϕF
∫ y
y

A(`)
[1+ϕE(1−Γ(y|(µ(`)))]2

(1− Γ(y|(µ(`)))dy∫ y
y z(y,A(`))l(y, `)dΓ(y|(µ(`))

.

At the same time, aggregate output can be expressed as follows, using that Γ is Pareto
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and firm size expression (3):

∫ y

y
z(y,A(`))l(y, `)dΓ(y|(µ(`)) =

∫ y

y
A(`)y · l(y, `) 1

µ(`)
y
− 1
µ(`)
−1
dy

=
1

µ(`)
ϕF
∫ y

y

A(`)

[1 + ϕE(1− Γ(y|(µ(`)))]2
(1− Γ(y|(µ(`)))dy

Plugging aggregate output back into LS(`) above, we obtain LS(`) = 1− µ(`). If µ satisfies

PAM, Q is identified from µ(`) = Q−1(R(`)), for a given R.

Third, we obtain κ as described in the text. In turn, equation (24), which allows us to

back out the overall matching efficiency, is derived as follows. First, note that:

λE(`) =
M(V(`),U(`))

(u(`) + κ(1− u(`)))L(`)
κ

= M(V(`),U(`))
κ(1− u(`))

u(`) + κ(1− u(`))

1

(1− u(`))L(`)

= AV(`)
1
2
(
u(`) + κ(1− u(`))L(`)

) 1
2

λE(`)

δ(`) + λE(`)

δ(`) + λU (`)

λU (`)

1

L(`)

= A
(
δ(`) + λE(`)

δ(`) + λU (`)

) 1
2 λE(`)

δ(`) + λE(`)

δ(`) + λU (`)

λU (`)
L(`)−

1
2

⇒ L(`) = A2 δ(`) + λU (`)

δ(`) + κλU (`)

(
1

λU (`)

)2

. (A.14)

Next, note that average firm size in location ` is given by l(`) = (1− u(`))L(`), and thus,

L (`) =

(
1 +

δ(`)

λU (`)

)
l(`). (A.15)

Equalizing (A.14) and (A.15), and solving for A gives (24) in the text, where we treat

(λU (`), u(`), l(`)) as observed for all `.

Fourth, we obtain δ(`) in each ` from local unemployment and job-finding rates, see (23).

Fifth, we obtain the A-schedule from how average value added varies across space:

E[z(y,A(`))|`] = A(`)E[y|`] = A(`) 1
1−µ(`)

⇒ A(`) = (1− µ(`))E[z(y,A(`))|`].

Sixth, regarding the housing market parameters, we treat (u(`), L(`), d(`),E[w(y, `)|`],R)

as observed for all ` (where R is the economy-wide replacement rate of the unemployed) and

obtain (ω, τ, h(·), wU (·)) from a system of four equations:
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We obtain ω from the expenditure share of housing in any location ` (for given (h(`), wU (`)),

ω =
h(`)d(`)

wU (`)u(`)L(`) + E[w(y, `)|`](1− u(`))L(`)
.

Then, given ω, we obtain the tax rate on home owners, τ , using government budget constraint

(18), housing market clearing (19), and replacement rate R, which satisfies

R
∑
`

E[w(y, `)|`] (1− u(`))L(`)∑
ˆ̀(1− u(ˆ̀))L(ˆ̀)

=
∑
`

wU (`)
u(`)L(`)∑
ˆ̀u(ˆ̀)L(ˆ̀)

,

where the RHS is the aggregate unemployment benefit. Note that

∑
`

wU (`)
u(`)L(`)∑
ˆ̀u(ˆ̀)L(ˆ̀)

= τ
∑
`

d(`)h(`)∑
ˆ̀u(ˆ̀)L(ˆ̀)

=
ωτ

1− τω
∑
`

E[w(y, `)|`](1− u(`))L(`)∑
ˆ̀u(ˆ̀)L(ˆ̀)

,

where the first equality uses government budget constraint (18) and the second one uses a

combination of (18) and housing market clearing (19), which gives E[w(y, `)|`](1−u(`))L(`) =

(1− ωτ)d(`)h(`). Equalizing the last two equations and solving for τ gives:

τ =
1

ω

R∑
ˆ̀(1−u(ˆ̀))L(ˆ̀)∑

ˆ̀u(ˆ̀)L(ˆ̀)
+R

.

Further, we can combine government budget constraint (18) and housing market clearing

(19) to obtain housing supply function h using observed rental rates d as well as (τ, ω)

h(`) =
ωE[w(y, `)|`](1− u(`))L(`)

(1− τω)d(`)
∀`.

Then, given (τ, h), we obtain unemployment income schedule wU from government budget

constraint (18), which holds for each `.

Last, to identify amenity schedule B, our starting point is the value of unemployment:

ρV U (`) = d(`)−ωB(`)wU (`) + b̃(`) + d(`)−ωB(`)λU (`)

[ ∫ w

wR(`)

1− F`(t)
δ(`) + λE(`)(1− F`(t))

dt

]
,

which is the same as in the baseline model, except that unemployed workers receive unem-

ployment benefit wU (`) and enjoy local amenity B(`), but suffer from unemployment stigma,

captured by b̃(`). Next, as before, reservation wage wR is implicitly defined by a condition

that equalizes the value of unemployment with the value of holding a job:
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d(`)−ωB(`)wR(`) =d(`)−ωB(`)wU (`) + b̃(`)

+ d(`)−ωB(`)(λU (`)− λE(`))

[ ∫ w

wR(`)

1− F`(t)
δ(`) + λE(`)(1− F`(t))

dt

]
,

where, to satisfy Assumption 1, we now set b̃(`) such that wR(`) = z(y,A(`)):

b̃(`) = d(`)−ωB(`)

(
z(y,A(`))− wU (`)− (λU (`)− λE(`))

[ ∫ w

wR(`)

1− F`(t)
δ(`) + λE(`)(1− F`(t))

dt

])
. (A.16)

Plug b̃(`) back into V U above, and use a change of variable (to re-express F` using Γ`, where

Γ` = Γ(y|µ(`))) and make use of the Pareto assumption on Γ to obtain

ρV U = d(`)−ωB(`)A(`)

1 + 2
(
λE(`)

)2 ∫ ∞
1

y
− 1
µ(`)

1

µ(`)
y
− 1
µ(`)
−1
∫ y

1

dt[
δ(`) + λE(`)t

− 1
µ(`)

]2dy

 ,

which allows us to back out B(`) for each `, given the normalization ρV U = 1 and given

(A,µ) (obtained above) as well as observed rental rates d and transition rates (λE , δ). �

G Estimation

G.1 Estimation Results

Table A.7: Calibrated Parameters

Parameter Value Calibration

κ 0.253 monthly UE and EE transition rate (LIAB)
A 0.276 monthly UE transition rate (LIAB) and average firm size (GFSO)
ω 0.272 rent-to-income of main tenant households (GFSO)
τ 0.164 replacement rate of unemployed workers (SPIN)

Figure A.2: Over-Identification: δ and λU in Data and Model

Notes: Data Sources: LIAB. For details on how these variables are constructed, see Appendix D.2.
Observations are weighted by the number of establishments in each CZ, indicated by different sizes of
the dots. 95% confidence intervals are displayed in gray.
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Figure A.3: Additional Parameter Estimates: Location Preference Schedule (top); Housing Supply (bot-
tom right) obtained from Residential Rents (bottom left)
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Notes: Data Source: The residential rent index (bottom left) was constructed by Ahlfeldt et al.
(2022), see Appendix D.3. Observations are weighted by the number of establishments in each CZ, in-
dicated by different sizes of the dots.

Figure A.4: Model Fit: Additional Non-Targeted Moments

Notes: Data Sources: Left panel is based on BHP; middle panel is based on firm-level wages of full-time employees from BHP (and
the percentiles are taken from the wage distribution that weighs observations by the number of full-time employees of each firm); right
panel is based on price data for commercial properties 2012/13 from the German Real Estate Association; see Appendices D.2 and
D.3 for details. Observations are weighted by the number of establishments in each CZ, indicated by different sizes of the dots. 95%
confidence intervals are displayed in gray.
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Table A.8: Determinants of Local TFP A(`)

(1) (2) (3) (4) (5)

Trade Tax 0.133∗ -0.141∗∗

(0.060) (0.047)
Distance to Highway -0.054∗∗∗ -0.039∗∗∗

(0.012) (0.009)
% of Employees with a College Degree 0.851∗∗∗ 0.674∗∗∗

(0.115) (0.116)
Net Business Registration Intensity 0.039∗∗ 0.016

(0.013) (0.013)

Observations 257 257 257 257 257
Adjusted R2 0.033 0.151 0.416 0.245 0.499

Notes: Data Source: German Federal Statistical Office and Federal Office for Building and Regional Plan-
ning. All regressions are run at the commuting-zone level and weighted by the number of establishments
in each CZ. Data is averaged across years for the period 2010-2017. Dependent variable in columns (1)-(5)
is ‘Log Local TFP, logA(`)’ obtained from our estimation for each `; see Section 5.3. See Appendices D.1
and D.3 for the definition of the independent variables.

G.2 East-West Comparison: Value Added

West-East Inequality in Value Added. In Table A.9, we report the West-East gap in

value added, both in the data and estimated model. Note that our model does not per-

fectly match the data moment because we target the fitted line of local value added per

worker (against `) instead of the exact data values.

Table A.9: West-East Inequality: Monthly Value Added per Worker (in e)

Data Model

Monthly Value Added per Worker, West 5237.02 5227.19
Monthly Value Added per Worker, East 4045.24 4122.54
West-East Gap 29.5% 26.8%
Notes: Data source: German Federal Statistical Office. We sum (monthly) value
added across all locations in East Germany and across all locations in West Ger-
many; and similarly for employees. We then take the ratio to obtain Value Added
per Worker for each region. See Appendix D.1 for more details.

Counterfactuals.

Table A.10: West-East Value Added Inequality: Counterfactual Models

Model No Sorting No OJS No Spatial Frictions

West-East Gap 27% 19% 7% 2%
Notes: This table is the analogue of Table 2 but for West-East inequality in value added (not wages).
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H Counterfactuals: Technical Details

H.1 The Role of Firm Sorting

We adjust b̃(`) so that the reservation wage in each ` remains the same as in the baseline model,

i.e., wR(`) = A(`)y, see (A.16). Moreover, we keep the estimated schedules (A(`), B(`), h(`))

from the baseline model in place. Without spatial firm sorting, F` (and thus Γ`), (λU , λE)

and d all differ from the baseline model.

First, since the wage function in each ` is still strictly increasing in y, we have F`(w(y, `)) =

Γ`(y). But here Γ`(y) = Γ(y), which follows from the premise of random matching, i.e., the

ex post productivity distribution is the same across locations.

Second, as unemployed workers are freely mobile across regions, we calculate λE(`) for

each ` to equalize the value of search while adjusting house price d(`) such that the housing

market clears in each `, given the estimated (A(`), B(`), h(`)) from the baseline model:

ρV U = d(`)−ωB(`)A(`)

[
1 + 2(λE(`))2

∫ ∞
1

(1− Γ(y))γ(y)

∫ y

1

1

[δ(`) + λE(`)(1− Γ(t))]2
dtdy

]
d(`)h(`) =

ω

1− τω
E[w(y, `)|`](1− u(`))L(`)

where Γ is the country-wide productivity distribution of firms (no longer `-specific). Note

that compared to baseline, we need to determine a new value of search, ρV U , to calculate

λE(`). We choose ρV U to guarantee the same total population size as in the baseline economy,

L̄ =
∫
L(`)dR(`). In practice, we solve a fixed point in ρV U so that it satisfies both welfare

equalization of workers as well as this population constraint. Once we determine λE(`) for

each `, we can compute λU (`) = λE(`)/κ.

H.2 The Role of On-the-Job Search

When reducing the intensity of OJS κ (e.g., κ = 0 as in the text), the modularity properties

of J̄ may change, so we need to re-solve for the sorting decision of firms. The population size

in each location (and thus worker and firm meeting rates) depends on the firm composition

in each `, but at the same time impacts firms’ sorting choices. We therefore need to solve for

a fixed point in firm allocation µ (and thus in Γ`):

Fix κ and postulate a matching function µ. Given this µ, we first obtain Γ`, and then find

meeting rate λU and housing price d (both as a function of (`;κ,Γ`, ρV
U )) so that—given

the estimated schedules (A(`), B(`), h(`)) from the baseline model—the value of search for

unemployed workers is equalized across space and local housing market clearing holds:
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ρV U = d(`)−ωB(`)A(`)

[
1 + 2(κλU (`))2

∫ ∞
1

(1− Γ`(y))γ`(y)

∫ y

1

1

[δ(`) + κλU (`)(1− Γ`(t))]2
dtdy

]
d(`)h(`) =

ω

1− τω
E[w(y, `)|`](1− u(`))L(`),

where the value of search is again calculated assuming wR(`) = A(`)y, supported by adjusting

b̃(`);41 and where we set the new value of search, ρV U , to achieve consistency with the

total population size from the baseline economy, L̄ =
∫
L(`)dR(`). Based on unemployed

workers’ welfare equalization, we obtain λU (`;κ,Γ`, ρV
U ) and therefore λE(`;κ,Γ`, ρV

U ) =

κλU (`;κ,Γ`, ρV
U ). With λU (`) for each ` in hand, we can also compute λF (`;κ,Γ`, ρV

U ) =

A
1
α (λU (`;κ,Γ`, ρV

U ))1− 1
α , as well as the match value of a firm type p and location `,

J̄(p, `) + k(`) = δ(`)λF (`;κ,Γ`, ρV
U )A(`)

∫ y

y

∫ y

y

1

[δ(`) + κλU (`;κ,Γ`, ρV U )(1− Γ`(t))]2
dtdΓ(y|p).

To find the optimal allocation Γ̂`, we maximize the sum of this value across (p, `)-pairs, subject

to market clearing in the land market, using a linear program. If Γ` = Γ̂` for all `, we have

found the equilibrium. If Γ` 6= Γ̂` for at least one `, we use Γ̂` as a new starting point and

repeat the same steps, until convergence.

Figure A.5 below demonstrates the equilibrium properties when shutting down OJS in

this counterfactual (κ = 0). In the left panel, the population gradient in the location index

flips its sign from positive (green—baseline) to negative (purple—counterfactual), as there is

a large outflow of workers from high-` places due to their loss of economic appeal. As a result,

low-` locations become attractive to firms, especially to productive ones, since filling vacancies

has become easier. This turns the supermodular J̄ from the baseline model into a (mostly)

submodular J̄ , inducing negative firm sorting for a wide range of locations (right panel).

H.3 The Role of Spatial Frictions

When the labor market is integrated the economy has a single job ladder and the model

is similar to the basic wage posting model with firm productivity z and economy-wide pro-

ductivity distribution Γ̃(z) =
∫

Γ
(

z
A(`)

∣∣∣µ(`)
)
dR(`). Employed workers accept a job offer

if the new wage is higher than the current one and the wage function is strictly increas-

ing in z, so that the wage cdf is F (w(z)) = Γ̃(z). The employment distribution becomes

G̃(z) = δ Γ̃(z)

δ+λE(1−Γ̃(z))
; and, in terms of the local employment distribution, G` is no longer

41In particular, b̃(`) is defined as in the “No-Sorting” case based on (A.16) but using F` (which we can compute based on
the postulated Γ`) and (λU , λE) obtained above.
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Figure A.5: Equilibrium under Active OJS (Baseline, κ > 0) and No OJS (Counterfactual, κ = 0)
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given by (13) but by G`(y) =
( ∫ y

y
g̃(A(`)y′)
γ̃(A(`)y′)γ`(y

′)dy′
)
/
( ∫ y

y
g̃(A(`)y′)
γ̃(A(`)y′)γ`(y

′)dy′
)
. We keep the

estimated schedules (A(`), B(`), h(`)) from the baseline model in place.

Note that (δ, λU , λE , b̃) are now all constant across `: There are no differences in the

job-separation rate, as we compute the economy-wide δ from the average location-specific

separation rates, δ =
∫
δ(`)L(`)

L̄
dR(`) (where δ(`) and L(`) are taken from the baseline model);

further, all workers—irrespective of their residence location—have the same chances to find

jobs, so there are economy-wide meeting rates for employed workers λE and unemployed

workers λU . We determine these rates using the total population size L from the baseline

model and L̄ = A
1
α
δ+λU

δ+κλU

(
λU
)− 1

α , which we derive from average firm size l(`) = (1 − u)L

and (24). Similar to the previous counterfactual exercises, we adjust the unemployment flow

benefit b̃(`) = b̃ (only that here it is independent of `) so that wR(`) = wR = A(`)y, i.e., in an

integrated labor market the reservation wage is also determined economy wide, not location

specific. Further, to equalize the value of search across all locations

ρV U (`) = d(`)−ωB(`)wU + b̃+ d(`)−ωB(`)λU
[ ∫ w

wR

1− F (t)

δ + λE(1− F (t))
dt

]
,

despite differences in local amenities B(`) (as estimated from the baseline model), housing

prices d need to adjust so that the ‘real’ value of local amenity d(`)−ωB(`) is the same

everywhere. As in the other counterfactuals, we choose the value of ρV U to be consistent

with the aggregate population size L. Finally, to make the obtained house price schedule d

consistent with local housing market clearing, population size L(·) adjusts so that (19) holds.

Figure A.6 displays the components of decomposition (16) for the baseline model (solid)

and the counterfactual without spatial hiring frictions (dashed).
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Figure A.6: No-Spatial-Frictions Counterfactual: Wages and Employment Distribution
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I PAM of Firms and Locations: Robustness

I.1 Negative Relation of Local Labor Share and GDP per Capita

Table A.11: Labor Shares—Robustness

(1) (2) (3) (4) (5)

log(GDP per capita) -0.0625*** -0.1010*** -0.0992*** -0.0794*** -0.1147***
(0.0087) (0.0211) (0.0130) (0.0086) (0.0236)

Share of Employment in Industry N Y N N Y
Establishment Size N N Y N Y
log(Population Density) N N N Y Y

N 257 257 257 257 257

Notes: Data Source: German Federal Statistical Office. All regressions are run at the commuting-zone level (CZ) and
weighted by number of establishments in each CZ. Data is averaged across years for the period 2010-2017. Column
(1) is our baseline; columns (2)-(5) add controls. When controlling for local employment shares by industry (‘Share
of Employment in Industry’), we take the following industries into account: agriculture; mining and electricity, gas,
water supply; manufacturing; construction; trade, transportation, information and communication; finance, insurance,
real estate; and public and other, education, health. ‘Establishment size’ refers to controls that contain the share of
establishments (out of the total number of establishments in a CZ) that have 0-9, 10-49, 50-249, and 250+ employees.

I.2 Negative Relation of Labor Share and Firm Productivity: General Case

We investigate the relationship between local labor share and local firm productivity beyond

the specific functional forms assumed in our quantitative setting (Section 5.1).

We are especially interested in two properties. First, given the empirical observation that

local labor shares are decreasing in `, can we infer positive spatial sorting by firms (i.e.,

is PAM necessary for ∂ LS(`)/∂` < 0)? Second, we are interested in the intuition for why

PAM is a force behind the decreasing local labor share function (i.e., we want to unpack the

sufficient conditions for ∂ LS(`)/∂` < 0).
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Denote the firm-level labor share by Ls(y, `) := w(y, `)/z(y,A(`)) and let the value-added-

weighted employment density be given by g̃`(y) := z(y,A(`))g`(y)∫ y
y z(y

′,A(`))g`(y′)dy′
, with corresponding cdf

G̃`(y). The local labor share in each ` is then

LS(`) =

∫ y
y w(y, `)g`(y)dy∫ y

y z(y,A(`))g`(y)dy

=

∫ y

y

w(y, `)

z(y,A(`))

z(y,A(`))g`(y)∫ y
y z (y′, A(`)) g (y′, `) dy′

dy

=

∫ y

y
Ls(y, `)g̃`(y)dy.

Thus, for the local labor share to be decreasing in `, the following must hold:

∂LS(`)

∂`
=
∂Ls(y, `)

∂`
+

∫ y

y

∂ ∂Ls(y,`)∂y

∂`
(1− G̃`(y)) +

∂Ls(y, `)

∂y

(
−∂G̃`(y)

∂`

)
dy < 0, (A.17)

where the first term is independent of `.

Necessary Conditions for ∂LS(`)/∂` < 0. If ∂LS(`)/∂` < 0 for all decreasing firm-level

labor shares Ls(·, `) (i.e., also for those that are supermodular, ∂2Ls(y, `)/∂y∂` ≥ 0), then

it must be that ∂G̃`/∂` ≤ 0 on some set of y of positive measure. This, in turn, is a strong

indication of positive sorting of firms across space, µ′ > 0.42

Sufficient Conditions for ∂LS(`)/∂` < 0. We obtain ∂LS(`)/∂` < 0 if the integrand of

(A.17) is negative, i.e., if the firm-level labor share is (i) submodular, ∂2Ls(y, `)/∂y∂` < 0;

and (ii) decreasing in y, ∂Ls(y, `)/∂y < 0, which renders the second term negative if positive

firm sorting across space ensures that ∂G̃`/∂` ≤ 0. Whereas condition (i) is difficult to

guarantee in general, we investigate (ii) more closely. First, note that ∂G̃`/∂` ≤ 0 if there is
42To see this, first note that for any `′ < `′′ and y < y, G̃`′′ ≤ G̃`′ if∫ y

y
g`′′(ỹ)z(ỹ, A(`′′))dỹ∫ y

y
g`′′(ỹ)z(ỹ, A(`′′))dỹ

≤

∫ y
y
g`′(ỹ)z(ỹ, A(`′))dỹ∫ y

y
g`′(ỹ)z(ỹ, A(`′))dỹ

⇔
∫ y

y

g`′′(ỹ)z(ỹ, A(`′′))dỹ

∫ y

y

g`′(ỹ)z(ỹ, A(`′))dỹ ≤
∫ y

y

g`′(ỹ)z(ỹ, A(`′))dỹ

∫ y

y

g`′′(ỹ)z(ỹ, A(`′′))dỹ,

i.e., if
∫ y
y
g`z(y,A(`)) is log-supermodular in (y, `), which is guaranteed if both g` and z are log-supermodular, with the latter

being satisfied, for instance, under the multiplicative z. Cross-differentiating log(g`) shows that g` is log-supermodular if

min
`,y

∂2γ`
∂y∂`

γ` −
∂γ`
∂`

∂γ`
∂y

> C ⇔ min
`,p,y

(
∂2γ

∂p∂y
γ − ∂γ

∂y

∂γ

∂p

)
µ′ > C

where C is a positive and bounded constant. This condition is satisfied if there is positive sorting of firms across space,
µ′ > 0, and if γ is sufficiently log-supermodular in (p, y).
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positive sorting of firms to locations, µ′ > 0, and if γ is sufficiently log-supermodular in (p, y)

(see Footnote 42), which is similar but slightly stronger than our assumption in the baseline

model that p shifts Γ(·|p) in the FOSD sense. Second, the feature that the firm-level labor

share is decreasing in y requires additional assumptions on the density γ`, which is what we

will turn to next.

We provide sufficient conditions, under which the firm-level labor share,

Ls(y, `) =
w(y, `)

z(y,A(`))
= 1−

[
δ(`) + λE(`)(1− Γ`(y))

]2 ∫ y
y

∂z(t,A(`))
∂y

[δ(`)+λE(`)(1−Γ`(t))]
2dt

z(y,A(`))
,

is decreasing in firm productivity y for all locations `. Differentiation and some algebra yield:

∂Ls(y, `)

∂y
= (1− Ls(y, `)) 2λE(`)γ`(y)

δ(`) + λE(`)(1− Γ`(y))
− Ls(y, `)

∂z(y,A(`))
∂y

z(y,A(`))
. (A.18)

We want to show that under the following assumptions this expression is negative and thus

the firm-level labor share is decreasing in y for all `:

1. γ`(·) is decreasing such that ∀y:

max
y

∂γ`(y)

∂y
< min

y

(
− λE(`)

δ(`) + λE(`)(1− Γ`(y))
γ`(y)2

)
;

2. z(·, A(`)) is weakly log-convex in y.

We proceed by contradiction. Suppose that ∂Ls(y,`)
∂y > 0 for some y ∈ [y, y], that is, (A.18)

is strictly positive at y.

First, note that, at y = y, (A.18) is negative, since the first term is zero while the second

one is strictly positive,

(1− Ls(y, `))︸ ︷︷ ︸
=0

2λE(`)γ`(y)

δ(`) + λE(`)(1− Γ`(y))︸ ︷︷ ︸
:=LHS(y)

< Ls(y, `)

∂z(y,A(`))

∂y

z(y,A(`))︸ ︷︷ ︸
:=RHS(y)

.

Second, in order for ∂Ls(y,`)
∂y > 0 for some y ∈ (y, y) on a set [y − ε, y + ε], ε > 0, it must be

that RHS(y) is smaller than LHS(y), i.e., RHS(·) must cross LHS(·) at least once and the

first crossing at point ŷ ∈ (y, y) is such that RHS(ŷ) crosses LHS(ŷ) from above. That is,

there exists ŷ ∈ (y, y) such that the slope of RHS(ŷ) is smaller than the slope of LHS(ŷ).

We now investigate these slopes.
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The slope of LHS(y) is given by:

−∂Ls(y, `)
∂y

2λE(`)γ`(y)

δ(`) + λE(`)(1− Γ`(y))
+ (1−Ls(y, `))

2λE(`)
(
∂γ`(y)
∂y (δ(`) + λE(`)(1− Γ`(y))) + λEγ`(y)2

)
(δ(`) + λE(`)(1− Γ`(y)))2

,

whose second term is negative under the 1. assumption above.

Next, the slope of RHS(y) is given by:

∂Ls(y, `)

∂y

∂z(y,A(`))
∂y

z(y,A(`))
+ Ls(y, `)

∂
∂z(y,A(`))

∂y

z(y,A(`))

∂y
,

where the second term is positive under the 2. assumption from above.

Consider the first crossing of RHS(·) and LHS(·), i.e., the point ŷ ∈ (y, y) at which

RHS(·) crosses LHS(·) from above. First note that at crossing ŷ, ∂Ls(ŷ, `)/∂y = 0 by

construction. Moreover, by the 1. assumption, LHS(ŷ) has a negative slope, while by the 2.

assumption RHS(ŷ) has a positive slope. Therefore, the slope of RHS(·) is larger than the

slope of LHS(·) at ŷ, and so RHS(·) cannot cross LHS(·) from above at ŷ—a contradiction.

As a result, under the specified assumptions (particularly that density γ` is sufficiently

decreasing), the firm-level labor share, Ls(·, `), is decreasing in firm productivity y, for each `.

I.3 Negative Relation of Labor Share and Firm Productivity: Log-Normal

We now demonstrate that the property of the negative relationship between local labor share

and local firm productivity from our quantitative model does not hinge on the Pareto assump-

tion on Γ(y|p). To do so, we provide simulations for a common alternative functional form

of firm productivity. Specifically, we assume that Γ(y|p) follows a log-normal distribution,

whereby log(y) follows a normal distribution with parameters (p, 0.52) and, in equilibrium,

(µ(`), 0.52). That is, firms with higher ex ante type (higher µ) have higher mean productivity

ex post. In line with the discussion above, we left-truncate this productivity distribution such

that its density is sufficiently decreasing for all µ (we truncate all productivity distributions

at the median productivity of the worst location in order to maintain a common y). Figure

A.7 shows that, as in the Pareto case, there is a negative relationship between local labor

shares and firm ex ante productivity under the log-normal assumption. As a result, we back

out an increasing matching function µ(·) (indicating PAM between firms and locations) from

the decreasing local labor share function LS(·) observed in the data.

To gain intuition for the negative relationship between local labor share and local firm

productivity, Figure A.8 plots for two locations—the top and bottom CZ—firm-level labor
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shares Ls(·, `) (left panel) and the cdf of (weighted) employment (right panel), informing

the two terms ∂Ls(y,`)
∂y

(
− G̃`(y)

∂`

)
in the integrand of (A.17): In each location, firm-level labor

shares decrease in productivity y; moreover, the weighted employment distribution of the top

location is stochastically better (under PAM). Thus, a decreasing empirical local labor share

function LS(·) calls—under decreasing firm-level labor shares Ls(·, `)—for PAM so that in

high ` more employment is concentrated in top firms with low labor shares.

Figure A.7: Identifying Firm Sorting from Local Labor Shares: Truncated Log-Normal Γ(y|p)

0.68 0.685 0.69 0.695 0.7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure A.8: Firm-Level Labor Shares and Employment Distribution: Truncated Log-Normal Γ(y|p)
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I.4 No Relation of Labor Share and Firm Productivity: Neutral Produc-

tivity Shifts

In contrast to the discussed productivity shifts across locations that stem from changes in

the tail parameter of the Pareto distribution or in the mean of the log-normal distribution,

there are other distributional shifts—which we call neutral shifts—that would not translate

into labor share differences across locations. These are shifts under which firm productivity
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in one location is simply the scaled firm productivity of another location. One example of

neutral productivity shifts is a scenario in which regions differ in the scale (and not the tail)

parameter of the Pareto distribution. We now formalize this discussion and show that neutral

productivity shifts impact neither local labor shares nor EE wage growth.

Suppose y ∼ Γ`, y
′ ∼ Γ`′ and y′

a ∼ Γ` for some constant a > 0, that is, productivity in

location `′ is a scaled version of productivity in `, y′ = ay. Then, Γ`′(y
′) = P

[
Y ′ ≤ y′

]
=

P
[
Y ′

a ≤
y′

a

]
= Γ`(

y′

a ) and γ`′(y′) = 1
aγ`(

y′

a ). We also assume z(y,A(`)) = A(`)y.

Local Labor Shares. We can express the wage in location `′ as:

w(y′, `′) = A(`′)y′ − (1 + ϕE(1− Γ`′(y
′)))2

∫ y′

y′

A(`′)

[1 + ϕE(1− Γ`′(t′))]2
dt′

= A(`′)y′ − (1 + ϕE(1− Γ`(y
′/a)))2

∫ y′

y′

A(`′)

[1 + ϕE(1− Γ`(t′/a))]2
dt′

= aA(`′)y′/a− a(1 + ϕE(1− Γ`(y
′/a)))2

∫ y′/a

y

A(`′)

[1 + ϕE(1− Γ`(t))]2
dt (change of var. t′ = at)

= aw(y′/a, `)
A(`′)

A(`)
.

Recall that l(y, `) is a function of Γ`(y) and from our observations, l(y′/a, `) = l(y′, `′). Then:

LS(`′) =

∫ y′
y′ w(y′, `′)l(y′, `′)γ`′(y

′)dy′∫ y′
y′ z(y

′, A(`′))l(y′, `′)γ`′(y′)dy′
=

∫ y
y w(ay, `′)l(ay, `′)γ`′(ay)ady∫ y

y z(ay,A(`′))l(ay, `′)γ`′(ay)ady
(change of var. y′ = ay)

=

∫ y
y w(ay, `′)l(y, `)γ`(y)dy∫ y

y z(ay,A(`′))l(y, `)γ`(y)dy

=

∫ y
y aw(y, `)A(`′)

A(`) l(y, `)γ`(y)dy∫ y
y z(y,A(`))aA(`′)

A(`) l(y, `)γ`(y)dy
= LS(`).

Local EE Wage Growth: Let y(·) be a quantile function s.t. Γ`(y(s)) = s. Then, s =

Γ`′(y
′(s)) = Γ`

(
y′(s)
a

)
, i.e. y′(s)

a = y(s). Consider two quantiles s1 < s2. Then:

w(y′(s2), `′)

w(y′(s1), `′)
=
w(y′(s2)/a, `)

w(y′(s1)/a, `)
=
w(y(s2), `)

w(y(s1), `)
.

Thus, the wage ratio of two firms with ranks s2 and s1 is the same in ` and `′, which implies

that EE wage growth is the same across locations: A job-to-job transition from a firm at

productivity quantile s1 to a firm at productivity quantile s2 leads to the same wage gain in

all locations.
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