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Abstract. In persuasion problems where the receiver’s action is one-dimensional

and his utility is single-peaked, optimal signals are characterized by duality, based on

a first-order approach to the receiver’s problem. A signal is optimal if and only if the

induced joint distribution over states and actions is supported on a compact set (the

contact set) where the dual constraint binds. A signal that pools at most two states

in each realization is always optimal, and such pairwise signals are the only solutions

under a non-singularity condition on utilities (the twist condition). We provide

conditions under which higher actions are induced at more or less extreme pairs of

states. Finally, we provide conditions for the optimality of either full disclosure or

negative assortative disclosure, where signal realizations can be ordered from least

to most extreme. Optimal negative assortative disclosure is characterized as the

solution to a pair of ordinary differential equations.
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1. Introduction

Following the seminal papers of Rayo and Segal (2010) and Kamenica and Gentzkow

(2011), the past decade has witnessed an explosion of interest in the design of optimal

information disclosure policies, or Bayesian persuasion. However, while significant

progress has been made in the special case where the sender’s and receiver’s utilities

are linear in the unknown state (Gentzkow and Kamenica 2016, Kolotilin, Mylovanov,

Zapechelnyuk, and Li 2017, Kolotilin 2018, Dworczak and Martini 2019)—so that a

distribution over states is effectively summarized by its mean—general results beyond

this simple case remain scarce.

This paper reports progress on persuasion with non-linear preferences. We consider

a standard persuasion problem with one sender and one receiver, where the receiver’s

action and the state of the world are both one-dimensional, and the receiver’s expected

utility is single-peaked in his action for any belief about the state. In this model, the

receiver’s action is optimal if and only if his expected marginal utility from increasing

his action equals zero: that is, iff the receiver’s first-order condition holds. This

property that the model admits a first-order approach is key for tractability. We

provide four types of results.

First, a signal (i.e., a disclosure policy or Blackwell experiment) is optimal if and only

if the joint distribution over states θ and actions a that it induces is supported on a

compact set Γ, which we call the contact set. The contact set is the set of pairs (a, θ)

that satisfy the dual constraint of the sender’s problem with equality. In economic

terms, (a, θ) ∈ Γ iff it is optimal for the sender to induce action a at state θ, where

the sender’s “value” for inducing a at θ is equal to the sum of the sender’s utility

when a is taken at θ and the sender’s shadow value of the impact of inducing a at θ on

the receiver’s obedience constraint when he is recommended action a. This technical

result is the foundation for our analysis.

Second, it is always without loss to focus on pairwise signals, where each induced

posterior distribution has at most binary support. Moreover, when the contact set

is pairwise, meaning that for each action a there are at most two states θ such that

(a, θ) ∈ Γ, then every optimal signal is pairwise. We show that the contact set is

pairwise under a non-singularity condition on the sender and receiver’s utilities, which

we call the twist condition. This implies that, for example, no-disclosure is generically
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suboptimal whenever the support of the prior contains three or more states. More

generally, it implies well-known prior conditions for all optimal signals to be pairwise

(Rayo and Segal 2010, Alonso and Câmara 2016, Zhang and Zhou 2016).

Third, we ask when it is optimal for the sender to induce higher actions at more or less

extreme states. That is, if the sender pools states θ1, θ2 and also pools states θ′1, θ
′
2, for

θ1 < θ′1 < θ′2 < θ2, should the induced action be higher at {θ1, θ2}—in which case we

say that disclosure is single-dipped, as more extreme states induce higher actions—or

{θ′1, θ′2}—in which case we say that disclosure is single-peaked? This seemingly ob-

scure question turns out to unify a large part of the literature on persuasion with non-

linear preferences. For instance, Friedman and Holden’s (2008)“matching extremes”

gerrymandering solution, where a gerrymanderer creates electoral districts that pool

extreme supporters with similarly extreme opponents, and wins those districts with

the most extreme supporters and opponents with the highest probability, is an ex-

ample of single-dipped disclosure. Goldstein and Leitner’s (2018) non-monotone stress

tests, where a regulator designs a test that pools the weakest banks that it wants to

receive funding with the strongest banks, pools slightly less weak banks with slightly

less strong banks, and so on, such that the weakest and strongest banks receive the

highest funding, is another such example. On the other hand, Guo and Shmaya’s

(2019) “nested intervals” disclosure rule, where a designer pools favorable states with

similarly unfavorable states, and persuades the receiver to take his preferred action

with higher probability at more moderate states, is an example of single-peaked dis-

closure.

We provide general conditions for the optimality of single-dipped disclosure (and,

similarly, single-peaked disclosure), which are all based on a very simple idea. If

disclosure is not single-dipped, then there must exist a single-peaked triple: a pair of

pooled state {θ1, θ3} and an intervening state θ2 ∈ (θ1, θ3) such that the induced ac-

tion at θ2 (say, action a2) is greater than the induced action at {θ1, θ3} (say, action a1).

Our conditions ensure that any single-peaked triple can be profitably perturbed in

the direction of single-dippedness by shifting weight on θ1 and θ3 from a1 to a2, while

shifting weight on θ2 in the opposite direction. The conditions are a bit complicated

in the general model, but they are very simple in leading special cases. In particular,

if the receiver’s optimal action equals the posterior mean (the simple receiver case),

then single-dipped disclosure is optimal if the sender’s marginal utility is convex in
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the state; and if the sender’s utility is state-independent (the simple sender case),

then single-dipped disclosure is optimal if the cross-partial of the receiver’s utility is

log-supermodular. These conditions generalize ones in the prior literature, such as

Friedman and Holden’s gerrymandering model and Beiglböck and Juillet’s “martin-

gale optimal transport” model. We also establish a notable theoretical implication of

single-dippedness/-peakedness: whenever a strict version of this property holds, the

optimal outcome is unique.

Fourth, we provide conditions for the optimality of either full disclosure, where the

state is always disclosed, or negative assortative disclosure, where the states are paired

in a negatively assortative manner, so that signal realizations can be ordered from

least to most extreme, and only a single state in the middle is disclosed. Intuitively,

full disclosure and negative assortative disclosure represent the extremes of maximum

disclosure (disclosing all states) and minimal disclosure (disclosing only one state).

There is a unique full disclosure outcome, but there are many negative assortative

disclosure outcomes, depending on the weights on the states in each pair. We also fur-

ther characterize the optimal negative assortative disclosure outcome as the solution

of a pair of ordinary differential equations, and show that in some cases these equa-

tions admit an explicit solution. Notably, negative assortative disclosure is optimal

whenever our conditions for the optimality of (strict) single-dipped/-peaked disclos-

ure are satisfied and in addition the sender would rather pool any pair of states (with

some non-degenerate weights) rather than separating them.

Our model and results generalize a great deal of prior literature: we give references

throughout the paper. Methodologically, we rely on linear programming duality and

connections to optimal transport. We build on Kolotilin (2018), which introduces

the first-order approach to persuasion and the corresponding strong duality result.

Dworczak and Martini (2019) and Dizdar and Kováč (2020) prove strong duality for

the simple (linear) case under weaker assumptions, which allow discontinuous utilities.

The simple case is important but non-generic, and the structure of optimal signals

is typically very different from that in our model. Dworczak and Kolotilin (2022)

prove strong duality for a general persuasion problem and study its implications for

multidimensional persuasion, focusing on the multidimensional simple case. Kramkov

and Xu (2022) prove duality results in an insider-trading problem that can be shown

to be mathematically equivalent to a subcase of our simple receiver case, albeit with
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a two-dimensional state space. Galperti, Levkun, and Perego (2021) use a different

duality result to study the value of data. The most related strand of the optimal

transport literature is that on martingale optimal transport (e.g., Beiglböck, Henry-

Labordere, and Penkner 2013, Galichon, Henry-Labordere, and Touzi 2014), which

we discuss in Section 4. A few recent papers apply optimal transport to persuasion,

but these works are not very related to ours either methodologically or susbtantively.1

2. Environment

2.1. Model. We consider a standard persuasion problem, where a sender chooses a

signal to reveal information to a receiver, who then takes an action. The sender’s

utility V (a, θ) and the receiver’s utility U(a, θ) depend on the receiver’s action a ∈
A := [0, 1] and the state of the world θ ∈ Θ := [0, 1]. The sender and receiver share

a common prior φ ∈ ∆(Θ), whose support is denoted by Θ := supp(φ).2 An outcome

π ∈ ∆(A×Θ) is a joint distribution over actions and states.

We impose three standard assumptions on the utility functions. First, utilities are

smooth.

Assumption 1. V (a, θ) and U(a, θ) are differentiable in a, and the marginal utilities

v(a, θ) =
∂V (a, θ)

∂a
and u(a, θ) =

∂U(a, θ)

∂a

are continuous in (a, θ). Moreover, the receiver’s marginal utility u(a, θ) is differenti-

able in a, and the partial derivative ua(a, θ) = ∂u(a, θ)/∂a is continuous in (a, θ).

Second, the receiver’s expected utility is single-peaked in his action for any posterior

belief. This is our key economic assumption.

1Perez-Richet and Skreta (2022) and Lin and Liu (2022) consider limited sender commitment;

Arieli, Babichenko, and Sandomirskiy (2022) and Smolin and Yamashita (2022) consider persuasion

with multiple receivers; Malamud and Schrimpf (2021) focus on the question of when optimal signals

partition a multidimensional state space.
2Throughout, for any compact metric spaceX,∆(X) denotes the set of Borel probability measures

on X, endowed with the weak* topology. By Theorem 12.14 in Aliprantis and Border (2006), any

η ∈ ∆(X) has a well-defined support supp(η), which is the smallest compact set of measure one.
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Assumption 2. U(a, θ) satisfies strict aggregate quasi-concavity in a: for all posteri-

ors µ ∈ ∆(Θ), !
u(a, θ)dµ = 0 =⇒

!
ua(a, θ)dµ < 0.

Quah and Strulovici (2012) and Choi and Smith (2017) characterized a weak version

of aggregate quasi-concavity in terms of primitive conditions on u. We provide an

analogous characterization of strict aggregate quasi-concavity in Appendix A, where

we also show how these characterizations can be viewed as corollaries of the optimality

of pairwise signals. A sufficient condition for strict aggregate quasi-concavity is that

ua(a, θ) < 0 for all (a, θ), so that U is strictly concave in a. This stronger condition

is violated in some applications we consider; however, Appendix A shows that strict

aggregate quasi-concavity is equivalent to strict concavity up to a normalization.

Third, the receiver’s optimal action satisfies an interiority condition.

Assumption 3. minθ∈Θ u(0, θ) = maxθ∈Θ u(1, θ) = 0.

Assumptions 1–3 imply that for any posterior µ, the receiver’s optimal action

a"(µ) = argmaxa∈[0,1]
"
U(a, θ)dµ is unique and is characterized by the first-order

condition !
u(a"(µ), θ)dµ = 0.

Our assumptions thus allow a “first-order approach” to the persuasion problem, sim-

ilar to the approach of Mirrlees (1999) and Holmström (1979) to the classical moral

hazard problem.3,4

The set of actions could also be allowed to be finite. In this case, the utility func-

tions V and U are piecewise linear in a, with each piece representing the expected

utilities spanned by lotteries over consecutive actions. Piecewise-linearity violates our

differentiability assumption; however, our main results go through in this case, with

simpler proofs.

3The conditions under which the first-order approach is valid in the persuasion problem (Assump-

tions 1–3) are much simpler than those in the classical moral hazard problem (e.g., Rogerson 1985,

Jewitt 1988). The first-order approach to persuasion is due to Kolotilin (2018).
4The substance of Assumption 3 is that for each θ, there exists a such that u(a, θ) = 0. Note that

it can never be optimal for the receiver to take any a such that u(a, θ) has a constant sign for all θ.

We can then remove all such a from A and renormalize A to [0, 1], so that Assumption 3 holds.
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A common interpretation of the receiver’s action a ∈ [0, 1] is that the receiver has a

private type and makes a binary choice—say, whether to accept or reject a proposal—

and a is the receiver’s choice of a cutoff type below which he accepts. This interpret-

ation is especially useful for some special cases of the model, as we see next.5

2.2. Special Cases. We define some leading special cases of the model, which we

return to periodically to illustrate our results.

(1) The simple case (Kamenica and Gentzkow 2011): u(a, θ) = θ − a and V (a, θ) =

V (a). That is, a"(µ) = Eµ[θ] and V is state-independent. This is the well-studied

case where the sender’s indirect utility from inducing posterior µ is V (Eµ[θ]).

(2) The simple receiver case (Beiglböck, Henry-Labordere, and Penkner 2013): u(a, θ) =

θ−a but V is arbitrary (e.g., possibly state-dependent). Here “simplicity” is assumed

for the receiver’s preferences but not the sender’s.

(2a) The separable subcase (Rayo and Segal 2010): V (a, θ) = w(θ)G(a) with w > 0,

G > 0, and G′ > 0, where G′ is the derivative of G. An interpretation of this subcase

is that the receiver has a private type t with distribution G and accepts a proposal iff

Eµ[θ] ≥ t, and the sender’s utility when the proposal is accepted is w(θ). Rayo and

Segal focused on the sub-subcase with the uniform distribution G(a) = a.6

(2b) The translation-invariant subcase (Beiglböck and Juillet 2016): V (a, θ) = P (a−
θ). An interpretation of this subcase is that the receiver “values” the proposal at

Eµ[θ], and the sender’s utility depends on the amount by which the proposal is “over-

valued,” a−θ. For example, a school may care about the extent to which its students

5To spell out this interpretation, let g(t|θ) be the conditional density of the receiver’s type t ∈ [0, 1]

given the state θ ∈ [0, 1]. The sender’s and receiver’s utilities from rejection are normalized to zero.

The sender’s and receiver’s utilities from acceptance are functions ṽ(t, θ) and ũ(t, θ), with ũ(t, θ)g(t|θ)
satisfying Assumption 2. For a ∈ [0, 1] (interpreted as the cutoff such that the receiver accepts iff

t ≤ a), we recover our model with V (a, θ) =
! a

0
ṽ(t, θ)g(t|θ)dt and U(a, θ) =

! a

0
ũ(t, θ)g(t|θ)dt.

6Rayo and Segal (2010) assume that the state (ω, θ) is two-dimensional, and the sender’s and

receiver’s marginal utilities are v(a, θ,ω) = ω and u(a, θ) = θ − a. They assume that there are

finitely many states (θ,ω), so generically the sender’s utility can be written as v(a, θ) = w(θ). Rayo

(2013), Nikandrova and Pancs (2017), and Onuchic and Ray (2022) consider the separable subcase

where θ is continuous and (ω, θ) is supported on the graph of θ → w(θ), albeit Rayo and Onuchic

and Ray restrict attention to monotone partitions. Tamura (2018), Kramkov and Xu (2022), and

Dworczak and Kolotilin (2022) allow more general distributions of (ω, θ) ∈ R2.
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are over- or under-placed. These preferences are similar to those in Goldstein and

Leitner (2018)’s model of stress tests, discussed in Section 8.

(3) The simple sender case (Friedman and Holden 2008): V (a, θ) = V (a) with v > 0,

and u satisfies uθ > 0 but is otherwise arbitrary. Here “simplicity” is assumed for the

sender’s preferences but not the receiver’s, and in addition the sender prefers higher

actions and the receiver’s utility is supermodular.

(3a) The translation-invariant subcase: u(a, θ) = T (θ−a), with T (0) = 0 and T ′ > 0,

where T ′ is the derivative of T . An example that fits this subcase is that the sender’s

utility when the proposal is accepted is 1, and the proposal corresponds to the receiver

undertaking a project that can either succeed or fail, where the receiver’s payoff is

1−κ when the project succeeds and−κ when it fails (and 0 when it is not undertaken),

with κ ∈ (0, 1). The difficulty of the project is 1 − θ, the receiver’s ability is 1 − t,

the receiver’s “bad luck” ε has distribution J , and the project succeeds if and only if

1 − θ ≤ 1 − t − ε, or equivalently ε ≤ θ − t. This example fits the current subcase

with V equal to the distribution of t and T (θ − a) = J(θ − a)− κ.

(3b) The quantile sub-subcase: u(a, θ) = 1{θ ≥ a}− κ, with κ ∈ (0, 1). This subcase

corresponds to the previous example with J(θ−a) = 1{θ ≥ a}, so the project succeeds
iff the receiver’s ability exceeds the project’s difficulty. While u is now discontinuous,

we can admit this subcase as a limit of the translation-invariant case. Friedman

and Holden (2008) focused on the translation-invariant case where T is a continuous

approximation of the step function 1{θ ≥ a}− 1/2.

The mapping between our model and Beiglböck, Henry-Labordere, and Penkner

(2013), Beiglböck and Juillet (2016), or Friedman and Holden (2008) is not entirely

obvious. We explain the connection following Theorem 4, which is the closest point

of contact with their results.

3. Duality

We set up the sender’s problem, and then derive a duality theorem that forms the

basis of our analysis.



PERSUASION AS MATCHING 9

The sender’s (primal) problem is to choose an outcome π ∈ ∆(A×Θ) to

maximize

!

A×Θ

V (a, θ)dπ(a, θ) (P)

subject to

!

A×!Θ
dπ(a, θ) =

!

!Θ
dφ(θ), for all measurable #Θ ⊂ Θ, (P1)

−
!

Ã×Θ

u(a, θ)dπ(a, θ) = 0, for all measurable #A ⊂ A. (P2)

(P1) is the feasibility constraint that the marginal of π on Θ equals the prior, φ.

(P2) is the obedience constraint that the receiver’s action is a"(µ) at each posterior µ.

An outcome π that violates (P2) is inconsistent with optimal play by the receiver, as

there exists Ã ⊂ A such that the receiver’s play is suboptimal conditional on the event

{a ∈ Ã}. Conversely, for any outcome π that satisfies (P1) and (P2), if the sender

designs a mechanism that draws (a, θ) according to π and recommends action a to

the receiver, it is optimal for the receiver to obey the recommendation. We therefore

say that an outcome is implementable iff it satisfies (P1) and (P2), and optimal iff it

solves (P).

We can compare (P) to the standard optimal transport (Monge-Kantorovich) problem

(e.g., Villani 2009). In optimal transport, two marginal distributions are given (e.g.,

of men and women, or workers and firms), and the problem is to find an optimal

joint distribution with the given marginals. In persuasion, the marginal distribution

over states is given (by the prior φ), and the problem is to find an optimal joint

distribution with this marginal (so (P1) holds), where for each action the conditional

distribution over states satisfies obedience (so (P2) holds).

The dual problem is to find a continuous function p(θ) and a bounded, measurable

function q(a) to

minimize

!

Θ

p(θ)dφ(θ) (D)

subject to p(θ)− q(a)u(a, θ) ≥ V (a, θ), for all (a, θ) ∈ A×Θ. (D1)

We say that (p, q) is feasible iff it satisfies (D1), and optimal iff it solves (D). The

interpretation of the dual problem is that p(θ) is the shadow price of state θ; q(a)

is the value of relaxing the obedience constraint at action a; and the dual constraint

(D1) says that p(θ) is no less than the sender’s value from assigning state θ to any
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action a, where this value is the sum of the sender’s utility, V (a, θ), and the product

of q(a) and the amount by which the obedience constraint at a is relaxed when state

θ is assigned to action a, u(a, θ).

A first result is that solutions to (P) and (D) exist, and there is no duality gap. Let

C(Θ) denote the set of continuous functions on Θ, and let B(A) denote the set of

bounded, measurable functions on A. We say that a price function p ∈ C(Θ) solves

(D) iff there exists q ∈ B(A) such that (p, q) is a solution to (D).

Lemma 1. Let Assumptions 1–3 hold.

(1) There exists π ∈ ∆(A×Θ) that solves (P).

(2) There exists p ∈ C(Θ) that solves (D).

(3) The values of (P) and (D) are the same: for any solutions π of (P) and p of

(D), we have
!

A×Θ

V (a, θ)dπ(a, θ) =

!

Θ

p(θ)dφ(θ).

Lemma 1 is similar to Lemmas 1 and 2 of Kolotilin (2018). We provide a more

detailed alternative proof that applies under slightly weaker assumptions.7

4. Contact Set

In this section, we define a compact set Γ ⊂ A × Θ with the properties that an

implementable outcome π is optimal iff supp(π) ⊂ Γ, and that a first-order condition

holds at any pair (a, θ) in a full-measure subset Γ" ⊂ Γ. Following the optimal

transport literature (e.g., Chapter 3 in Ambrosio, Brué, and Semola 2021), we refer

to this set Γ as the contact set.

We henceforth assume that the receiver prefers higher actions at higher states.

7The proof in Kolotilin (2018) uses the Banach-Alaoglu theorem, as in linear programming refer-

ences such as Anderson and Nash (1987). Our proof uses the Arzela-Ascoli theorem, as in optimal

transport references such as Villani (2009) and Santambrogio (2015). Our proof also remains valid

when Θ is an arbitrary compact metric space. A key step in the proof (Lemma 10)—which was left

somewhat implicit in Kolotilin—is showing that q may be assumed bounded in (D).
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Assumption 4. u(a, θ) satisfies strict single-crossing in θ: for all a and θ < θ′,

u(a, θ) = 0 =⇒ u(a, θ′) > 0.

Together with Assumptions 1–3, Assumption 4 ensures that for each action a there is

a unique state θ"(a) such that u(a, θ"(a)) = 0, and that θ"(a) is a strictly increasing,

continuous function from A onto Θ.8

Let p be the optimal price function (which we will see is unique under Assumptions

1–4), and let I be a sufficiently large compact interval (e.g., as defined in Lemma 10).

Let

Q(a) = {r ∈ I : p(θ) ≥ V (a, θ) + ru(a, θ) for all θ ∈ Θ} , for all a ∈ A.

This is the set of possible values for q(a) ∈ I that satisfy (D1) for all θ, given the

optimal price function p. Note that for any measurable selection q from Q, the pair

(p, q) is a solution to (D).

By part (3) of Lemma 1, together with (P1) and (P2), any optimal π and (p, q) satisfy
!

A×Θ

(p(θ)− V (a, θ)− q(a)u(a, θ))dπ(a, θ) = 0.

By (D1), the integrand is non-negative, and hence any optimal π is concentrated on

the set Γ of points (a, θ) that satisfy (D1) with equality. We call any such set Γ a

contact set. Note that Γ depends on the selection q from Q.

Our first main result (Theorem 1) shows that q given by

q(a) =

$
%

&
− v(a,θ!(a))

ua(a,θ!(a))
, θ"(a) ∈ Θ and p(θ"(a)) = V (a, θ"(a)),

minQ(a)+maxQ(a)
2

, otherwise,

is a measurable selection from Q, and the associated contact set Γ given by

Γ = {(a, θ) ∈ A×Θ : p(θ) = V (a, θ) + q(a)u(a, θ)},

has the desired properties. We call this set Γ the contact set, to distinguish it from

contact sets that result from different choices of q. We explain the role of our chosen

q after stating our result.

8The substance of Assumption 4 is that for each a there is at most one θ such that u(a, θ) = 0.

We can then reorder Θ such that Assumption 4 holds.
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Some notation is in order. For each a, the a-section of Γ is defined as

Γa = {θ ∈ Θ : (a, θ) ∈ Γ}.

The projection of Γ on A is defined as

AΓ = {a ∈ A : (a, θ) ∈ Γ for some θ ∈ Θ}.

Finally, the set Γ" ⊂ Γ is defined by letting its a-section be given by

Γ"
a =

$
%

&
{θ"(a)}, θ"(a) ∈ {minΓa,maxΓa},

Γa, otherwise,
for all a ∈ A.

Theorem 1. Let Assumptions 1–4 hold.

(1) The set Γ is compact and satisfies minΓa ≤ θ"(a) ≤ maxΓa for all a ∈ AΓ.

Moreover, (p, q) solves (D). Consequently, an implementable outcome π solves

(P) iff supp(π) ⊂ Γ.

(2) The set Γ" is a Borel subset of Γ, and

v(a, θ) + q(a)ua(a, θ) + q′(a)u(a, θ) = 0, for all (a, θ) ∈ Γ", (1)

with the convention that q′(a) · 0 = 0, even if q is not differentiable at a.

Moreover, an implementable outcome π solves (P) iff there exists a conditional

probability πa of π given a such that supp(πa) ⊂ Γ"
a and

"
Θ
u(a, θ)dπa(θ) = 0

for all a ∈ supp(απ), where απ denotes the marginal distribution of π on A.

Equation (1) is the first-order condition of the dual problem: by (D1), the sender

chooses an action a to induce at state θ so as to maximize V (a, θ) + q(a)u(a, θ),

and taking the FOC with respect to a yields (1). Thus, Theorem 1 says that there

is a compact contact set Γ such that an implementable outcome is optimal iff it is

supported on Γ; and there is a measure-1 subset Γ" ⊂ Γ such that the sender’s FOC

holds on Γ". Theorem 1 is our key tool for characterizing optimal outcomes: by

showing that points (a, θ) violate (1), we can exclude them from Γ, and hence from

the support of any optimal outcome.

Taking the expectation of (1) with respect to an optimal conditional probability πa

yields a useful formula for q(a):

q(a) = − Eπa [v(a, θ)]

Eπa [ua(a, θ)]
, for all a ∈ AΓ. (2)
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This says that q(a) equals the product of the sender’s expected marginal utility at a

and the rate at which a increases as the obedience constraint is relaxed, where the

latter term equals −1/Eπa [ua(a, θ)] by the implicit function theorem applied to the

obedience constraint. Note that we defined q so that (2) holds for a where πa = δθ!(a)

(i.e., for actions induced at disclosed states); here we see that this equation also holds

for a where πa is non-degenerate (i.e., for actions induced at pooled states).

The technical aspects of Theorem 1—the particular choice of q and the distinction

between Γ and Γ"—are specified so that Γ and Γ" have the desired properties of

compactness and satisfaction of (1), respectively. Intuitively, by selecting q(a) from

the interior of Q(a) (when p(θ"(a)) > V (a, θ"(a)) and Q(a) is multivalued), we ensure

that AΓ does not contain any actions a that are “redundant,” in the sense that

θ"(a) /∈ [minΓa,maxΓa]—for such actions,
"
Θ
u(a, θ)dπa(θ) ∕= 0 for all πa ∈ ∆(Γa), so

these actions are not induced by any optimal outcome. In turn, Γ" is obtained from

Γ by removing redundant states from each a-section—if θ"(a) ∈ {minΓa,maxΓa},
then πa(θ

"(a)) = 1 for any πa ∈ ∆(Γa) such that
"
Θ
u(a, θ)dπa(θ) = 0, so any states

θ ∕= θ"(a) can be removed from Γa.
9 We illustrate these points with an example.

Example 1. Consider the simple case with V (a) = 0 if a < 1/2 and V (a) = (a−1/2)2

otherwise. Let φ be uniform on Θ = {0, 1/2, 1}. Note that p(θ) = V (θ, θ) solves (D).

Moreover, Q(a) = 0 if a < 1/2 and Q(a) = [a− 1/2, a] otherwise. Our selection from

Q is given by q(a) = 0 if a < 1/2 and q(a) = 2a−1 otherwise. Note that this selection

is from the interior of Q(a) for all a ∈ (1/2, 1).

With our selection, the contact set Γ = ([0, 1/2]× {0, 1/2}) ∪ {1, 1} is compact, but

Γ" = Γ \ ({0, 1/2} ∪ {1/2, 0}) is not compact. Note also that there exists an optimal

outcome with supp(π) = Γ (e.g., the outcome that induces action 1 with certainty

if θ = 1, and induces action a ∈ [0, 1/2] with densities 4 − 8a and 8a if θ = 0 and

θ = 1/2, respectively.) However, for any such outcome there exists a conditional

probability πa such that supp(πa) = Γ"
a for all a ∈ AΓ = [0, 1/2] ∪ {1} (i.e., π1 = δ1

and πa = (1− 2a)δ0 + 2aδ1/2 for all a ∈ [0, 1/2]).

In contrast, consider an alternative selection from Q given by q̃(a) = 0 if a < 1/2 and

q̃(a) = a otherwise. The associated contact set Γ̃ = Γ ∪ ([1/2, 1) × {1}) \ {(1/2, 0)}

9Thus, Γ \Γ! is the polar subset of Γ with respect to (P2), in the sense that a set Γ0 ⊂ Γ satisfies

π(Γ0) = 0 for all π ∈ ∆(Γ) satisfying (P2) iff Γ0 ⊂ Γ \ Γ!.
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is not compact because (1/2, 0) /∈ Γ̃, and AΓ̃ contains redundant actions a ∈ (1/2, 1)

that are not induced by any optimal outcome.

In Appendix C.1, we give additional examples showing that the FOC (1) might not

hold on all of Γ (which motivates introducing the set Γ"), and that without Assump-

tion 4 Γ might not be compact and the FOC might fail on a positive-measure subset

of Γ.

Remark 1. Under Assumptions 1–4, there is a unique solution p to (D). We give a

proof of this fact following the proof of Theorem 1. As shown by Example 1 and the

additional examples in Appendix C.1, while the price function p is unique, there can

be multiple functions q such that (p, q) is a solution to (D).

Lemma 1 and Theorem 1 can be compared to results in the literature on martingale

optimal transport (MOT). The MOT problem is to find an optimal joint distribution of

two variables (say, a and θ) with given marginals, subject to the martingale constraint

Eπa [θ] = a for all a. This problem coincides with the simple receiver case of our model

with an exogenously fixed distribution of the receiver’s action. Motivated by problems

in mathematical finance, Beiglböck, Henry-Labordere, and Penkner (2013) introduce

MOT and prove that the primal and dual problems have the same value; however,

they also show that in MOT the dual problem may not have a solution, unlike in

our model with endogenous actions. Beiglböck, Nutz, and Touzi (2017) establish

existence of a weaker, non-standard notion of a solution to the MOT dual problem.

Beiglböck and Juillet (2016) do not use duality but do introduce single-dippedness;

we discuss their paper in Section 6. None of these papers establish compactness of

the contact set, which is an important property that holds in our model as well as in

standard optimal transport. In sum, MOT is related to our simple receiver case, but

the endogenous action distribution apparently makes our model more tractable.

5. Pairwise Disclosure and the Twist Condition

The contact set Γ introduced above describes the set of pairs of actions a and states θ

that it is optimal for the sender to match together, in the sense that (a, θ) is contained

in the support of an optimal outcome. At the same time, the a-section Γ"
a describes

the set of states θ that it is optimal for the sender to pool together to induce action
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a. We say that the contact set is pairwise if |Γ"
a| ≤ 2 for all a. When the contact set

is pairwise, it is strictly suboptimal for the sender to ever pool more than two states.

In this section, we show that there always exist optimal signals that never pool more

than two states, and we give conditions under which the contact set is pairwise, so

that every optimal signal has this property.

A signal τ ∈ ∆(∆(Θ)) is a distribution over posterior beliefs µ ∈ ∆(Θ) such that the

average posterior equals the prior:
"
µdτ = φ (Aumann and Maschler 1995, Kamenica

and Gentzkow 2011). Uniqueness of the receiver’s optimal action implies that any

signal τ induces a unique outcome πτ through the map µ *→ a" (µ).10 A signal τ is

pairwise if it induces posterior beliefs with at most binary support: | supp(µ)| ≤ 2

for each µ ∈ supp(τ).11

For example, with a uniform prior φ, for any cutoff θ̂ ∈ [0, 1] the signal that reveals

states below the cutoff and pools each pair of states θ and 1+ θ̂−θ for θ ∈ [θ̂, (1+ θ̂)/2]

to induce posterior µ = δθ/2 + δ1+θ̂−θ/2 is pairwise. The special case where θ̂ = 1 is

full-disclosure, which is also pairwise. In contrast, no-disclosure, where τ(φ) = 1, is

not pairwise.

Without Assumptions 1–3, pairwise signals may be suboptimal. For example, suppose

the sender rules three castles, one of which is undefended. The state θ—the identity

of the undefended castle—is uniformly distributed. Suppose the receiver can attack

any two castles, and payoffs are (−1,+1) for the sender and receiver, respectively,

if the receiver attacks the undefended castle, and are (+1,−1) otherwise. Then any

pairwise signal narrows the set of possibly undefended castles to at most two, so the

receiver always wins. But if the sender discloses nothing, the receiver wins only with

probability 2/3.12

10Conversely, any implementable outcome π is induced by a signal τπ through the map a &→ πa.
11Related notions include “conjugate” disclosure rules in Nikandrova and Pancs (2017) and “p-

pairwise” information structures in Terstiege and Wasser (2020).
12Another example of a persuasion problem where pairwise signals are suboptimal is the price-

discrimination problem of Bergemann, Brooks, and Morris (2015). Note that the receiver’s utility

is not single-peaked in the three-castles or price-discrimination examples.
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Our second main result is that pairwise signals are without loss under Assumptions 1–

3.13 Moreover, equation (1) implies that if it is optimal to induce the same action a at

three states θ1, θ2, and θ3, then the vector (v(a, θ1), v(a, θ2), v(a, θ3)) must be a linear

combination of the vectors (u(a, θ1), u(a, θ2), u(a, θ3)) and (ua(a, θ1), ua(a, θ2), ua(a, θ3)).

This observation gives a condition—which we call the twist condition—under which

pooling more than two states is suboptimal, so that every optimal signal is pairwise.

Twist Condition For all a and θ1 < θ2 < θ3 such that θ1 < θ"(a) < θ3, we have

|S| =

'''''''

v(a, θ1) v(a, θ2) v(a, θ3)

u(a, θ1) u(a, θ2) u(a, θ3)

ua(a, θ1) ua(a, θ2) ua(a, θ3)

'''''''
∕= 0. (3)

We will apply this condition extensively in Section 6.

Theorem 2. Let Assumptions 1–4 hold.

(1) For any signal τ , there exists a pairwise signal τ̂ such that πτ̂ = πτ .

(2) If the twist condition holds, then |Γ"
a| ≤ 2 for all a, and hence every optimal

signal is pairwise.

The intuition for part (1) is that for any posterior, there exists a hyperplane passing

through it such that all posteriors on the hyperplane induce the same action, and the

extreme points of the hyperplane in the simplex have at most binary support. Thus,

any posterior that puts weight on more than two states can be split into posteriors

with at most binary support without affecting the induced distribution on A × Θ.

Figure 1 illustrates this argument for a posterior with weight on three states.

To get a sense of the proof of part (1), note that, for a given posterior µ, another

posterior µ′ induces the same action as µ iff the action a"(µ) satisfies the first-order

condition
"
u(a"(µ), θ)dµ′ = 0. Since the first-order condition is a moment condition,

the set of posteriors that induce action a"(µ) is the set of probability distributions

that satisfy one moment condition. By Richter-Rogosinsky’s theorem, the extreme

points of this set have at most binary support. Hence, by Choquet’s theorem, µ

can be written as an expectation, with respect to some measure λµ ∈ ∆(∆(Θ)), of

13Our proof of this result does not require Assumption 4, and also remains valid when Θ is an

arbitrary compact metric space.
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θ1

θ2

θ3

µ′

µ′′

← a"(µ)

µ

Figure 1. Pairwise Signals are Without Loss

Notes: The optimal action at any posterior on the line between µ′ and

µ′′ equals a"(µ), so splitting µ into µ′ and µ′′ eliminates a non-binary-

support posterior without changing the outcome.

distributions with at most binary support that all induce action a"(µ). Finally, by

the measurable selection theorem, the mapping from µ to λµ can be taken to be

measurable, and can thus be used to define a pairwise signal that induces the same

distribution on A×Θ as any given signal τ .14

Part (2) follows easily from Theorem 1 (especially equation (1)), but it also has a

simple intuition based on pairwise signals. Consider a posterior distribution µ with

supp(µ) = {θ1, θ2, θ3}. By part (1), we can split µ into posterior distributions µ1

and µ2 with at most binary support that both induce action a∗(µ). For example,

suppose that supp(µ1) = {θ1, θ2} and supp(µ2) = {θ1, θ3}. Consider a perturbation

that moves probability mass dp on θ1 from µ1 to µ2. This perturbation induces

non-zero marginal changes in the receiver’s action at µ1 and µ2. In the non-singular

case, these changes have a non-zero marginal effect on the sender’s expected utility

by the implicit function theorem. Therefore, either this perturbation or the reverse

perturbation, where dp is replaced with −dp, is strictly profitable for the sender.

14This argument indicates how part (1) generalizes when actions are multi-dimensional: if A is

a compact, convex subset of RN and the receiver’s utility is strictly concave, then the receiver’s

optimal action is characterized by N first-order conditions, so it is without loss to consider signals

that induce posteriors which are supported on at most N + 1 states.
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The twist condition always fails in the simple case (i.e., |S| = 0). Hence, in the simple

case, Theorem 2 never rules out pooling multiple states, and indeed pooling multiple

states is often optimal (e.g., Kolotilin, Mylovanov, Zapechelnyuk, and Li 2017).15

However, an immediate corollary of Theorem 1 is that no disclosure is generically

suboptimal when there are at least three states, because for a fixed a a generic vector

(v(a, θ))θ∈Θ with |Θ| ≥ 3 coordinates, cannot be expressed as a linear combination of

two vectors (u(a, θ))θ∈Θ and (ua(a, θ))θ∈Θ, as is required by (1).

Corollary 1. Let Assumptions 1–4 hold. For any φ with | supp(φ)| ≥ 3 and any u,

no disclosure is suboptimal for generic v.

Observe that Corollary 1 allows the case where u and v always have the opposite sign,

so the sender’s and receiver’s ordinal preferences are diametrically opposed. Hence,

even in this case no-disclosure is generically suboptimal

Well-known prior results by Rayo and Segal (2010), Alonso and Câmara (2016),

and Zhang and Zhou (2016) also give conditions under which all optimal signals are

pairwise. Theorem 2 easily implies these earlier results.16

While Theorem 1 shows that the contact set always characterizes optimal outcomes—

in that an implementable outcome π is optimal iff supp(π) ∈ Γ—when the contact

set is pairwise it also directly determines the optimal conditional probability πa =

ρδθ + (1 − ρ)δθ′ , where Γ"
a = {θ, θ′} and ρ solves ρu(a, θ) + (1 − ρ)u(a, θ′) = 0.

Thus, when Γ" is pairwise all optimal outcomes have the same pairwise conditional

probability πa, and may differ only in the marginal distribution of actions απ.

6. Single-Dipped and Single-Peaked Disclosure

The next two sections investigate the assortative structure of optimal disclosure:

which pairs of actions and states (a, θ) is it optimal for the sender to match together?

15Of course, Theorem 2 shows that even when pooling multiple states is optimal, there also exists

an optimal pairwise signal, where the “multi-state pool” is split into pairs. Conversely, if multiple

posteriors all induce the same action, they can be pooled without affecting the outcome.
16Proposition 4 in Alonso and Câmara (2016) states that if u(a, θ) = θ− a and there do not exist

ζ ≤ 0 and ι ∈ R such that v(a, θi) = ζθi + ι for i = 1, 2, 3, then it is not optimal to induce action

a at states θ1, θ2, and θ3. This result is too strong as stated, and it is not correct unless ζ is also

allowed to be positive. Theorem 2 implies this corrected version of Alonso and Câmara’s result.
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The simplest version of this question would ask when optimal outcomes are positively

or negatively assortative, in that higher actions are induced at higher or lower states.

However, because the matching between actions and states is constrained by the

receiver’s obedience condition, there is typically little flexibility in “how positively

assortative” outcomes can be. For example, if u(a, θ) = θ− a then all implementable

outcomes exhibit positive assortativity between the action and the (mean) state.

While the sender has little control over whether higher actions are induced at higher

or lower states, she typically has much more control over whether higher actions are

induced at more or less extreme states. In this section, we ask when it is optimal

for the sender to induce higher actions at more or less extreme states: that is, when

optimal outcomes are “single-dipped” or “single-peaked.”17

Formally, a triple (a1, θ1), (a2, θ2), (a1, θ3) is single-dipped (single-peaked) if a1 ≥ (≤
)a2 and θ1 < θ2 < θ3; similarly, such a triple is strictly single-dipped (-peaked) if

a1 > (<)a2. A set Γ† ⊂ A × Θ is single-dipped (-peaked) if it does not contain a

strictly single-peaked (-dipped) triple of points; similarly, such a set is strictly single-

dipped (-peaked) if it does not contain a single-peaked (-dipped) triple. Finally, an

outcome π is (strictly) single-dipped if it is concentrated on a (strictly) single-dipped

set,18 and similarly for single-peakedness. In particular, by Theorem 1, if Γ or Γ"

is single-dipped/-peaked, then so is every optimal outcome. Most of our results for

single-dippedness/peakedness are symmetric, in which case we provide proofs only

for the single-dipped case.

6.1. Variational Theorem. Characterizing when optimal signals are single-dipped/-

peaked involves some additional conditions on the sender’s and receiver’s preferences.

The simplest of these is that the sender prefers higher actions.

Assumption 5. v(a, θ) > 0 for all (a, θ).

17Mathematically, positive/negative assortativity correspond to monotonicity in the FOSD order,

while single-dippedness/-peakedness correspond to monotonicity in a variability order that depends

on u; when u(a, θ) = θ − a, this variability order is the usual convex order.
18That is, there exists a Borel (strictly) single-dipped set Γ† such that π(Γ†) = 1.
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Now we introduce a matrix R, which is a non-local analog of the matrix S introduced

in Theorem 2. For any a1, a2 and θ1 < θ2 < θ3, we define

R =

(

)*
V (a2, θ1)− V (a1, θ1) −(V (a2, θ2)− V (a1, θ2)) V (a2, θ3)− V (a1, θ3)

−u(a1, θ1) u(a1, θ2) −u(a1, θ3)

u(a2, θ1) −u(a2, θ2) u(a2, θ3)

+

,- .

The next result is our main tool for determining when optimal outcomes are single-

dipped/-peaked.

Theorem 3. Let Assumptions 1–5 hold. Suppose that for all θ1 < θ2 < θ3 and all

a2 > (<)a1 such that θ1 ≤ θ"(a1) ≤ θ3, there exists a vector y ≥ 0 such that Ry ≥ 0

and Ry ∕= 0. Then Γ is single-dipped (-peaked), and hence so is any optimal outcome.

The economic idea behind Theorem 3 is very simple. The condition for single-

dippedness says that an outcome that assigns positive probability to a strictly single-

peaked triple (a1, θ1), (a2, θ2), (a1, θ3) can be improved by re-allocating mass y1 on

θ1 and mass y3 on θ3 from a1 to a2, while re-allocating mass y2 on θ2 from a2 to a1.

See Figure 2 for an illustration. Indeed, this re-allocation is profitable for the sender,

because the sender’s expected utility increases when a1 and a2 are held fixed (i.e., the

first coordinate of Ry is non-negative); the receiver’s marginal utility conditional on

being recommended a1 increases (i.e., the second coordinate of Ry is non-negative),

which increases the receiver’s action, and hence increases the sender’s expected utility

by Assumption 5; and the receiver’s marginal utility conditional on being recommen-

ded a2 also increases (i.e., the third coordinate of Ry is non-negative), which again

increases the sender’s expected utility. Moreover, at least one of these improvements

is strict (i.e., Ry ∕= 0). The same logic applies for an outcome whose support contains

a strictly single-peaked triple (even if this triple occurs with 0 probability), except

now mass must be re-allocated from small intervals around θ1, θ2, and θ3.

We also make use of the following stability result, which says that if the conditions of

Theorem 3 hold only weakly but can be approximated by strict conditions, then there

exists an optimal single-dipped/-peaked outcome π (however, in this case there could

also be other optimal outcomes that are not single-dipped/-peaked). For example,
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a1
θ1 θ2 θ3

a2

y1 y2 y3

Figure 2. A Profitable Perturbation for a Non-Single-Dipped outcome

Notes: The figure shows a perturbation of an outcome that shifts

weights y1 and y3 on θ1 and θ3 from a1 to a2 and shifts weight y2

on θ2 from a2 to a1. This perturbation is profitable if it increases the

receiver’s expected marginal utility at a1 and a2 and also increases the

sender’s expected utility for fixed a1 and a2.

this result implies that in the simple case there is an optimal single-dipped outcome

as well as an optimal single-peaked outcome.19

Lemma 2. Let Assumptions 1–4 hold. Suppose that vn is a sequence of continuous

functions converging uniformly to v, and suppose that the corresponding contact sets

Γn are single-dipped (-peaked). Then there exists a single-dipped (-peaked) optimal

outcome.

The proof of Lemma 2 is complicated by the fact that the Hausdorff limit of single-

dipped sets is not necessarily single-dipped. This point is illustrated in Example 7 in

Appendix C.1, which also shows the lemma’s conclusion cannot be strengthened to

the claim that there exists an optimal outcome that is supported on a single-dipped/-

peaked set (rather than merely being concentrated on such a set).

19Section 4.3 in Kleiner, Moldovanu, and Strack (2021) and Theorem 1 in Arieli, Babichenko,

Smorodinsky, and Yamashita (2022) establish a result in the simple case that is somewhat related

to this observation. They show that there exists an optimal signal that partitions the state space

into singletons and intervals, with each singleton state being disclosed and each interval of states

being pooled into one or two distinct posterior means. This result easily implies that there exist

both an optimal single-dipped outcome and an optimal single-peaked outcome (see, e.g., Corollary

2 in Arieli, Babichenko, Smorodinsky, and Yamashita 2022).
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6.2. Sufficient Conditions. We now impose an additional assumption requiring

some extra smoothness (cf. Assumption 1) and, more substantively, strengthening

strict single-crossing of u in θ (Assumption 4) to strict monotonicity.

Assumption 6. v(a, θ), u(a, θ), and ua(a, θ) have partial derivatives in θ, denoted

by vθ(a, θ), uθ(a, θ), and uaθ(a, θ). In addition, uθ(a, θ) > 0 for all (a, θ).

The following result gives general sufficient conditions for optimality of single-dipped/-

peaked disclosure. As we will see, these conditions cover prior models, as well as some

new applications.

Theorem 4. Let Assumptions 1–6 hold. If uaθ(a, θ)/uθ(a, θ) and vθ(a2, θ)/uθ(a1, θ)

are increasing (decreasing) in θ for all a and a2 ≥ (≤)a1, then there exists an optimal

single-dipped (-peaked) outcome.

If in addition either uaθ(a, θ)/uθ(a, θ) or vθ(a2, θ)/uθ(a1, θ) is strictly increasing (de-

creasing) in θ for all a and a2 ≥ (≤)a1, then Γ is single-dipped (-peaked) and Γ" is

strictly single-dipped (-peaked), and hence every optimal outcome is strictly single-

dipped (-peaked).

The proof of Theorem 4 verifies the conditions in Theorems 2 and 3 and Lemma 2,

with a perturbation that holds fixed actions a1 and a2 while increasing the sender’s

expected utility in the single-dipped case, and a perturbation that holds fixed a higher

action a1 and the sender’s expected utility (for fixed a1, a2) while increasing a lower

action a2 in the single-peaked case.

The intuition for Theorem 4 is straightforward in the simple receiver and simple sender

cases. In the simple receiver case, uaθ(a, θ)/uθ(a, θ) = 0 and vθ(a2, θ)/uθ(a1, θ) =

vθ(a2, θ), so our sufficient conditions for single-dipped disclosure to be optimal are

satisfied iff v is convex in θ.20 To see why, note that for any strictly single-peaked

triple (a1, θ1), (a2, θ2), (a1, θ3), the perturbation that moves mass on θ1 and θ3 from a1

to a2 and moves mass on θ2 in the opposite direction so as to hold fixed the receiver’s

marginal utility conditional on being recommended either action has the effect of also

holding fixed the probability of each recommendation, while spreading out the state

20In the separable and translation-invariant subcases, convexity of v simplifies to convexity of w

and P ′.
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conditional on action a2 and concentrating the state conditional on action a1. This

perturbation is profitable when the difference V (a2, θ)−V (a1, θ) is convex in θ, which

holds whenever v is convex in θ.21

In the simple sender case, vθ(a2, θ)/uθ(a1, θ) = 0, so our sufficient conditions for single-

dipped disclosure to be optimal are satisfied iff uθ is log-supermodular in (a, θ), or

equivalently u is more log-convex in θ at higher actions a.22 To see why, note that for

any strictly single-peaked triple (a1, θ1), (a2, θ2), (a1, θ3), the perturbation that moves

mass on θ1 and θ3 from a1 to a2 and moves mass on θ2 in the opposite direction so

as to hold fixed the receiver’s marginal utility conditional on being recommended a1

as well as the total probability of each recommendation has the effect of increasing

the receiver’s marginal utility conditional on being recommended a2. This follows

because, by log-supermodular of uθ, for the receiver’s expected marginal utility the

marginal rate of substitution between “shifting weight from θ1 to θ2” and “shifting

weight from θ2 to θ3” is higher at a1 than a2. Finally, when V is state-independent

and increasing in a, this perturbation increases the sender’s expected utility.

In the simple sender and simple receiver cases, the sufficient conditions for the optim-

ality of strict single-dipped/-peaked disclosure in Theorem 4 are “almost necessary,”

because the condition |S| ∕= 0 on A × Θ implies that |S| has a constant sign on

A × Θ, which can be shown to be equivalent to strict convexity/concavity of v in

the simple receiver case and to strict log-supermodularity/log-submodularity of uθ in

the simple sender case. By Theorem 2, a necessary condition for the optimality of

strict single-dipped/-peaked disclosure is that |S| ∕= 0 on the restricted domain where

θ1 < θ"(a) < θ3.

There are close antecendents to the conditions in Theorem 4 for the simple receiver

and simple sender cases. In the martingale optimal transport literature, Beiglböck

and Juillet (2016) introduce the notions of single-dipped/-peaked outcomes under

the names “left-curtain/right-curtain couplings,” and show that these outcomes are

optimal when the planner’s (sender’s) marginal utility is convex in θ—a condition

21The careful reader may notice that this argument did not invoke Assumption 5, because the

receiver’s actions a1 and a2 were held fixed in the relevant perturbation. Indeed, in the simple

receiver case, Theorem 4 holds even without Assumption 5, as shown in Appendix C.4.
22In the translation-invariant subcase, log-supermodularity of uθ simplifies to log-concavity of T ′.
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referred to in this literature as the “martingale Spence-Mirrlees condition.”23 Earlier,

in a model of partisan gerrymandering, Friedman and Holden (2008) show that, under

an “informative signal property,” if it is optimal to assign two voter types to the same

district, then all voter types in between these two must be assigned to districts with

less favorable median voters. Partisan gerrymandering is equivalent to the simple

sender case (as the map-maker cares only about winning seats, and not directly about

the composition of districts), the above property of districting is equivalent to single-

dippedness, and the informative signal property is equivalent to log-supermodularity

of uθ.
24 Theorem 4 thus unifies and generalizes these disparate contributions.

6.3. Uniqueness. We now show that strict single-dippedness/-peakedness implies

that there is a unique optimal outcome.

Theorem 5. Let Assumptions 1–4 hold. If Γ" is strictly single-dipped (-peaked), then

Γ"
a = {t1(a), t2(a)} for all a ∈ AΓ, where t1, t2 : AΓ → Θ are measurable functions

satisfying t1(a) ≤ θ"(a) ≤ t2(a), t2(a) ≤ t2(a
′), and t1(a

′) /∈ (t1(a), t2(a)) (t1(a) ≤
t1(a

′), and t2(a) /∈ (t1(a
′), t2(a

′))) for all a < a′ in AΓ. Moreover, if φ has a density

f , then the optimal outcome is unique.

Theorem 5 is somewhat akin to Brenier’s theorem in optimal transport, which shows

that the optimal transport plan is unique under a suitable complementarity-type

condition, called the twist or generalized Spence-Mirrlees condition (Brenier 1991,

Gangbo and McCann 1996; or see Section 1.3 in Santambrogio 2015). In martin-

gale optimal transport, the optimal plan is unique under the martingale Spence-

Mirrlees condition (e.g., Proposition 3.5 in Beiglböck, Henry-Labordère, and Touzi

2017), which as noted above coincides with our condition for the optimality of strict

single-dippedness in the simple-receiver case. The key implication of Theorem 5 is

23More precisely, Beiglböck and Juillet (2016) show that the unique optimal outcome is single-

dipped in the translation-invariant subcase if P ′ is strictly convex (Theorem 6.1) and in the separable

subcase if w is strictly convex (Theorem 6.3). Theorem 5.1 in Henry-Labordère and Touzi (2016)

and Theorem 3.3 in Beiglböck, Henry-Labordère, and Touzi (2017) extend this conclusion to the

general case where v(a, θ) is strictly convex in θ. In all these papers, the marginal distribution over

actions is fixed.
24We further investigate the connection between gerrymandering and persuasion in a companion

paper, Kolotilin and Wolitzky (2020).
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that the optimal marginal distribution of actions απ is unique; there is no analog of

this result in optimal transport, where both marginals are fixed.

Proof. Since Γ" is strictly single-dipped, we have |Γ"
a| ≤ 2 for all a ∈ AΓ, so Γ"

a =

{t1(a), t2(a)} with t1(a) = minΓ"
a ≤ θ"(a) ≤ maxΓ"

a = t2(a) for all a ∈ AΓ. Since Γ

is compact Γ" is constructed from Γ using a continuous function θ"(a), the functions

t1 and t2 are measurable. Since Γ" is single-dipped, for all a < a′ in AΓ, we have

t2(a) ≤ t2(a
′) (otherwise (a, t1(a)), (a

′, t2(a
′)), (a, t2(a)) is a strictly single-peaked

triple in Γ") and t1(a
′) /∈ (t1(a), t2(a)) (otherwise (a, t1(a)), (a

′, t1(a
′)), (a, t2(a)) is a

strictly single-peaked triple in Γ").

Suppose now that φ has a density. Let Θ0 be the set of states θ such that there exist

a < a′ in AΓ with θ = t2(a) = t2(a
′). Since t2 is increasing, Θ0 is at most countable.

Since φ has a density, φ(Θ0) = 0. So, φ(Θ \ Θ0) = 1, and if t2(a) ∈ Θ \ Θ0, then

t2(a
′) /∈ Γ"

a for all a < a′ in AΓ. This, in turn, implies that π is uniquely determined.

We explain why π is uniquely determined using a physical argument.25 Consider for

clarity the simple receiver case. Imagine a continuous distribution φ of sand on the

unit interval, together with a set of levers that we identify with their fulcrums a. The

set of fulcrums is AΓ, a lever with fulcrum a has a pile of sand on its left endpoint

t1(a) and another pile on its right endpoint t2(a), and each lever is balanced: for each

grain of sand at t2(a), there are (t2(a) − a)/(a − t1(a)) grains of sand at t1(a). The

function t2(a) is increasing: levers with higher fulcrums have higher right endpoints.

Each grain of sand located at any point θ must be assigned to a lever with some

fulcrum a and θ ∈ {t1(a), t2(a)}. The claim that π is uniquely determined by Γ, t1,

and t2 is equivalent to the claim that the assignment of sand to levers is unique.

To see why this is true, note that the set of points θ that correspond to the right

endpoint of multiple levers is countable, since t2 is increasing. Since φ is atomless,

we can ignore the allocation of sand at this set of points. With this proviso, all the

sand at the right-most point θ = maxΘ can only be assigned to the highest lever

a = maxAΓ, for which t2(a) = θ. To keep this lever in balance, for each grain of sand

we assigned to the right endpoint t2(a), we must assign (t2(a)− a)/(a− t1(a)) grains

to the left endpoint t1(a). (If t1(a) = a = t2(a), lever a is assigned all the sand at

a, and only this sand). Working our way through the support of φ from right to left

25A rigorous version of this argument will be included in the next version of the paper.
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in this fashion (and ignoring the negligible set of points θ with θ = t2(a) = t2(a
′) for

a ∕= a′), we obtain the unique assignment of sand to levers. □

7. Full Disclosure and Negative Assortative Disclosure

Our last set of results gives conditions for the optimality of two simple disclosure pat-

terns: full disclosure, where each state is disclosed, and negative assortative disclosure,

where all states are paired in a negatively assortative manner.

A note on terminology: in Section 6, we considered “assortativity” between states and

actions, asking whether higher actions should be matched with more or less extreme

states. In the current section, “negative assortative disclosure” refers to assortativity

between pairs of states. One can also view full disclosure as capturing “positive

assortativity” between states, by matching identical states to form degenerate “pairs.”

7.1. Full Disclosure. An implementable outcome π is full disclosure if its support

is ∪θ∈Θ(a
"(δθ), θ), so that each state θ induces action a"(δθ). There is a unique such

outcome.

If for all states θ1 and θ2, and all probabilities ρ, the sender prefers to split the

posterior µ = ρδθ1 + (1− ρ)δθ2 into degenerate posteriors δθ1 and δθ2 , then the sender

prefers full disclosure to any pairwise signal. Since pairwise signals are without loss

by part (1) of Theorem 2, full disclosure is then optimal.

Conversely, if the sender strictly prefers not to split µ = ρδθ1 +(1− ρ)δθ2 into δθ1 and

δθ2 for some states θ1 and θ2 and some probability ρ, then the sender strictly prefers

the pairwise signal that differs from full disclosure only in that it pools states θ1 and

θ2 into µ; so full disclosure is not optimal.26 Recalling that belief µ = ρδθ1 +(1−ρ)δθ2

induces action a"(µ) satisfying

ρu(a"(µ), θ1) + (1− ρ)u(a"(µ), θ2) = 0,

we obtain the following result.

26This argument is valid when φ has finite support. The general case (Lemma 3) uses duality

and is adaptated from part (2) of Proposition 1 in Kolotilin (2018); we give a simpler proof using

Theorem 1 and also establish uniqueness.
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Lemma 3. Let Assumptions 1–4 hold. Full disclosure is optimal iff, for all µ =

ρδθ1 + (1− ρ)δθ2 with θ1 < θ2 in Θ and ρ ∈ (0, 1), we have

ρV (a"(µ), θ1) + (1− ρ)V (a"(µ), θ2) ≤ ρV (a"(δθ1), θ1) + (1− ρ)V (a"(δθ2), θ2). (4)

Moreover, full disclosure is uniquely optimal if (4) holds with strict inequality for all

such µ.

In the simple case, condition (4) holds iff V is convex in a. In the simple sender case,

condition (4) simplifies as follows:

Corollary 2. In the simple sender case, full disclosure is optimal iff, for all µ =

ρδθ1 + (1− ρ)δθ2 with θ1, θ2 ∈ Θ and p ∈ (0, 1), we have

V (a" (µ)) ≤ ρV (a" (δθ1)) + (1− ρ)V (a" (δθ2)) . (5)

Becker (1973) famously showed that if the utility from matching two types h (θ1, θ2)

is supermodular, then it is optimal to match like types. Legros and Newman (2002)

refer to this extreme form of positive assortative matching as segregation. Their

Propositions 4 and 9 show that segregation is optimal iff h (θ1, θ1) + h (θ2, θ2) ≥
2h (θ1, θ2) for all θ1, θ2 (which is a strictly weaker property than supermodularity).

In the context of persuasion, segregation corresponds to full disclosure. Note that if

we fix p = 1/2 and let h (θ1, θ2) = V (a" (δθ1/2 + δθ2/2)), then (5) reduces to Legros

and Newman’s condition. Intuitively, full disclosure is “less likely” be optimal in

persuasion than in classical matching, because in persuasion the designer has an

extra degree of freedom ρ in designing matches.

In the simple receiver case, there is a simple sufficient condition for (4):

Corollary 2’. In the simple receiver case, full disclosure is optimal if V (a, θ) is convex

in a and satisfies V (θ1, θ2) + V (θ2, θ1) ≤ V (θ1, θ1) + V (θ2, θ2) for all θ1, θ2 ∈ Θ.

Proof. Condition (4) holds because

ρV (pθ1 + (1− ρ)θ2, θ1) + (1− ρ)V (ρθ1 + (1− ρ)θ2, θ2)

≤ ρ(ρV (θ1, θ1) + (1− ρ)V (θ2, θ1)) + (1− ρ)(ρV (θ1, θ2) + (1− ρ)V (θ2, θ2))

≤ ρV (θ1, θ1) + (1− ρ)V (θ2, θ2),



28 KOLOTILIN, CORRAO, AND WOLITZKY

where the first inequality holds because V (a, θ) is convex in a, and the second holds

because V (θ1, θ2) + V (θ2, θ1) ≤ V (θ1, θ1) + V (θ2, θ2). □

A sufficient condition for V (θ1, θ2) + V (θ2, θ1) ≤ V (θ1, θ1) + V (θ2, θ2) is supermodu-

larity of V : for all θ1 < θ2 and a1 < a2, V (a1, θ1) + V (a2, θ2) ≥ V (a1, θ2) + V (a2, θ1).

Thus, in the simple receiver case, full disclosure is optimal whenever the sender’s

utility is convex in a and supermodular in (a, θ). This sufficient condition for full dis-

closure generalizes that given by Rayo and Segal (2010) for the separable subcase.27

When the prior has full support and the contact set is pairwise (e.g., the twist con-

dition holds), full disclosure is uniquely optimal whenever it is optimal. To see the

intuition, suppose full disclosure is optimal, and suppose there is another optimal

signal that pools some states θ1 and θ2 to induce an action a. Then the signal that

discloses all other states while pooling θ1 and θ2 to induce a is also optimal. But

then the signal that discloses all other states while pooling θ1, θ2, and the third state

θ"(a) ∕= θ1, θ2 to induce a is also optimal, and this signal is not pairwise.

Theorem 6. Let Θ = [0, 1] and let Assumptions 1–4 hold. If the contact set is

pairwise and full disclosure is optimal, then full disclosure is uniquely optimal.

Theorem 6 may fail without the assumption Θ = [0, 1], as follows from Example 1.

7.2. Negative Assortative Disclosure. A set Γ† is single-dipped (-peaked) negative

assortative if there exist a decreasing (increasing) function t1 : A†
Γ → Θ and an

increasing (decreasing) function t2 : A
†
Γ → Θ such that t1(a) ≤ θ"(a) ≤ t2(a) and Γ†

a =

{t1(a), t2(a)} for all a. An outcome π is single-dipped (-peaked) negative assortative

if it is concentrated on such a set, so that states t1(a) and t2(a) are pooled to induce

action a.

The main result of this section is that if strictly single-dipped (-peaked) disclosure

is optimal and the sender strictly prefers to pool any two states, then single-dipped

(-peaked) negative assortative is optimal. Moreover, if the prior has a density, then

27Their condition is that w is increasing in θ and G is convex in a, where V (a, θ) = w(θ)G(a).

In the sub-subcase with G(a) = a, (4) holds iff w is increasing in θ, because (4) simplifies to

p(1− p)(w(θ2)− w(θ1))(θ2 − θ1) ≥ 0.
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the optimal outcome is unique (by Theorem 5) and is characterized as the solution

to a system of two ordinary differential equations.

To see the intuition, note that if strictly single-dipped disclosure is optimal, then

any two pairs of pooled states {θ1, θ3} and {θ′1, θ′3} with (without loss) θ1 < θ3,

θ′1 < θ′3, and θ1 ≤ θ′1, must be either ordered (i.e., θ1 < θ3 ≤ θ′1 < θ′3) or nested (i.e.,

θ1 ≤ θ′1 < θ′3 ≤ θ3). This follows because if the pairs overlap (i.e., θ1 < θ′1 < θ3 < θ′3),

then either (θ1, θ
′
1, θ3) or (θ

′
1, θ3, θ

′
3), together with the corresponding actions, would

form a single-peaked triple. Hence, for any pair of pooled states {θ1, θ3}, there must

exist a disclosed state θ2 ∈ (θ1, θ3): intuitively, there must exist pairs of pooled states

in the interval (θ1, θ3) that are closer and closer together, until the pair degenerates

into a single disclosed state. Therefore, if any two pairs of pooled states {θ1, θ3} and

{θ′1, θ′3} are ordered, then there would exist two distinct disclosed states θ2 ∈ (θ1, θ3)

and θ′2 ∈ (θ′1, θ
′
3). But if the sender strictly prefers to pool any two states, this is

impossible. Finally, since pairs of pooled states cannot overlap or be ordered, the

only remaining possibility is that all pairs of pooled states are nested: that is, that

disclosure is negative assortative.28

Theorem 7. Let Θ = [0, 1], and let Assumptions 1–4 hold. If Γ" is strictly single-

dipped (-peaked) and for all θ1 < θ2 there exists p ∈ (0, 1) such that

ρV (a"(µ), θ1) + (1− ρ)V (a"(µ), θ2) > ρV (a"(δθ1)), θ1) + (1− ρ)V (a"(δθ2), θ2), (6)

with µ = ρδθ1 + (1 − ρ)δθ2, then Γ" is single-dipped (-peaked) negative assortative.

Moreover, if φ has a density f , then the functions t1 and t2 are continuous and solve

the system of the two differential equations,

u(a, t1(a))(−dφ([0, t1(a)])) + u(a, t2(a))dφ([0, t2(a)]) = 0, (7)

d

da

.
v(a, t1(a))u(a, t2(a))− v(a, t2(a))u(a, t1(a))

u(a, t1(a))ua(a, t2(a))− u(a, t2(a))ua(a, t1(a))

/

=
v(a, t1(a))ua(a, t2(a))− v(a, t2(a))ua(a, t1(a))

ua(a, t1(a))u(a, t2(a))− ua(a, t2(a))u(a, t1(a))
,

(8)

28In this argument, the existence of the two disclosed states relies on the assumption that Θ =

[0, 1]. Example 8 in Appendix C.1 shows that when Θ ∕= [0, 1], the set Γ! is not necessarily negative

assortative even if Γ! is strictly single-dipped (-peaked) and (6) holds for all θ1 < θ2.
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for all a ∈ (a, a] where a = minAΓ and a = maxAΓ, with the boundary conditions

(t1(a), t1(a), t2(a), t2(a)) = (0, θ"(a), θ"(a), 1)

((t1(a), t1(a), t2(a), t2(a)) = (0, θ"(a), θ"(a), 1)) .
(9)

Similarly to equation (4) in the previous subsection, equation (6) simplifies in special

cases. In the simple case, (6) holds iff V is strictly concave in a.29 In the simple

sender case, it holds iff V (a"(µ)) > ρV (a"(δθ1))) + (1 − ρ)V (a"(δθ2)). In the simple

receiver case, it holds if V (a, θ) is concave in a and satisfies V (θ1, θ2) + V (θ2, θ1) >

V (θ1, θ1) + V (θ2, θ2) for all θ1 < θ2; a sufficient condition for the latter property is

strict submodularity of V . These conditions generalize the sufficient condition for

pooling given by Rayo and Segal (2010) for the separable subcase.30

To understand the differential equations, note that if t1 and t2 are differentiable then

(7) can be written as

u(a, t1(a))f(t1(a))t
′
1(a) = u(a, t2(a))f(t2(a))t

′
2(a).

This is the obedience condition conditional on recommendation a, as the posterior

conditional on recommendation a is

πa =
−f(t1(a))t

′
1(a)

−f(t1(a))t′1(a) + f(t2(a))t′2(a)
δt1(a) +

f(t2(a))t
′
2(a)

−f(t1(a))t′1(a) + f(t2(a))t′2(a)
δt2(a).

31

In addition, (8) results from solving the system of equations (from the sender’s FOC,

(1)),

v(a, t1(a)) + q(a)ua(a, t1(a)) + q′(a)u(a, t1(a)) = 0,

v(a, t2(a)) + q(a)ua(a, t2(a)) + q′(a)u(a, t2(a)) = 0,

for q(a) and q′(a), and recalling that q′ is the derivative of q.32 Finally, the boundary

condition (9) for the single-dipped case follows because the lowest induced action a is

induced at the disclosed state θ"(a) = t1(a) = t2(a), and the highest induced action

29In the simple case, V is strictly concave iff no disclosure is uniquely optimal for all priors, by

Corollary 1 in Kolotilin, Mylovanov, and Zapechelnyuk (2022).
30Their condition is that w is strictly decreasing in θ and G is concave in a, where V (a, θ) =

w(θ)G(a). In the sub-subcase with G(a) = a, (6) holds iff w is strictly decreasing in θ.
31This equation is a version of the Monge-Ampere equation in optimal transport.
32This argument shows that (8) holds for all a with t1(a) < θ!(a) < t2(a) even if Γ! is only

pairwise and not also single-dipped/-peaked.
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a is induced at states 0 = t1(a) and 1 = t2(a). The boundary condition for the

single-peaked case is analogous.

In the simple receiver case, (8) simplifies to

d

da

.
v(a, t1(a))

t2(a)− a

t2(a)− t1(a)
+ v(a, t2(a))

a− t1(a)

t2(a)− t1(a)

/
= −v(a, t2(a))− v(a, t1(a))

t2(a)− t1(a)
.

Geometrically, this says that the slope of the curve a → Eπa [v(a, θ)] is equal to the

negative of the slope of the secant passing through the points (t1(a), v(a, t1(a))) and

(t2(a), v(a, t2(a))).
33

Next, we give primitive conditions on V and u for (6) to hold, and hence for negative

assortative disclosure to be optimal.

Corollary 3. Let Θ = [0, 1], let all partial derivatives of V (a, θ) and u(a, θ) of

order at most 2 be differentiable, and let Assumptions 1–6 hold. Furthermore, let

uaθ(a, θ)/uθ(a, θ) and vθ(a, θ)/uθ(a, θ) be increasing (decreasing) in θ for all a, with

at least one of these functions being strictly increasing (decreasing). Then for all

θ1 < θ2 there exists p ∈ (0, 1) such that (6) holds iff

va(a, θ
"(a)) ≤ v(a, θ"(a))uaa(a, θ

"(a))

ua(a, θ"(a))

+2
vθ(a, θ

"(a))ua(a, θ
"(a))− v(a, θ"(a))uaθ(a, θ

"(a))

uθ(a, θ"(a))
, for all a ∈ A.

(10)

In particular, if (10) holds in addition to the above conditions (with monotonicity

of vθ(a, θ)/uθ(a, θ) for all a strengthened to monotonicity of vθ(a2, θ)/uθ(a1, θ) for all

a2 ≥ (≤)a1), then Γ" is single-dipped (-peaked) negative assortative.

Equation (10) is a local necessary condition for (6): if (10) fails, then (6) also fails

for θ1 < θ2 sufficiently close to θ"(a). When Γ" is strictly single-dipped (-peaked),

this local necessary condition turns out to be globally sufficient for (6). Equation

(10) simplifies dramatically in some special cases. In the simple receiver case, (10)

simplifies to va(a, a) + 2vθ(a, a) ≤ 0; in the translation-invariant simple receiver case,

this simplifies further to P ′′(0) ≥ 0. In the translation-invariant simple sender case,

(10) simplifies to va(a)/v(a) ≤ T ′′(0)/T ′(0).

We give some examples of optimal single-dipped negative assortative disclosure.

33Nikandrova and Pancs (2017) derive this condition for the separable sub-subcase with v(a, θ) =

w(θ).
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Example 2. Consider the simple receiver case with A = Θ = [1/e, e], f(θ) = 1/(2θ),

and V (a, θ) = a/θ.34 We claim that the unique optimal outcome matches each state

θ1 ∈ [1/e, 1] with state θ2 = 1/θ1 with equal weights, so that the induced action

is a = θ1/2 + 1/(2θ1). Thus, t1(a) = a −
√
a2 − 1, and t2 = a +

√
a2 − 1 for all

a ∈ AΓ = [1, e/2 + 1/(2e)].

Indeed, by Theorem 4, Γ" is strictly single-dipped, since w(θ) = 1/θ is strictly convex.

By Corollary 3, (6) holds, since w′ < 0. Hence, by Theorem 7, Γ" is single-dipped

negative assortative and satisfies (7)–(9). For θ2 = 1/θ1 and a = θ1/2 + 1/(2θ1), (7)

holds because

u(a, θ2) =

.
1

2θ1
− θ1

2

/
= −

.
θ1
2
− 1

2θ1

/
= −u(a, θ1),

f(θ2)
dθ2
da

=
1

1/θ1

.
− 1

θ21

dθ1
da

/
= − 1

θ1

dθ1
da

= −f(θ1)
dθ1
da

,

(8) holds because

d

da

.
w(θ1)

1

2
+ w(θ2)

1

2

/
=

d

da

.
1

2θ1
+

θ1
2

/
=

d

da
a = 1,

w(θ2)− w(θ1)

θ2 − θ1
=

θ1 − 1/θ1
1/θ1 − θ1

= −1,

and (9) holds because 1/(1/e) = e and 1/1 = 1. Note that we can instead solve this

example by using Theorem 1 directly, because, for q(a) = a, the function V (a, θ) +

q(a)u(a, θ) = a/θ + a(θ − a) is maximized at a = θ/2 + 1/(2θ) for all θ ∈ [1/e, e].

Example 3 (Quantile Persuasion). Consider the quantile simple sender subcase,

u(a, θ) = 1{θ ≥ a}− κ with κ ∈ (0, 1). Let φ have a density on [0, 1]. Assuming that

the receiver breaks ties in favor of the sender, we obtain that, for θ1 < θ2,

a"(ρδθ1 + (1− ρ)δθ2) =

$
%

&
θ2, ρ ≤ 1− κ,

θ1, ρ > 1− κ.

Note that (6) always holds for ρ ∈ (0, 1− κ). We claim that there exists an optimal

single-dipped negative assortative outcome π with απ([a, 1]) = φ([a, 1])/κ and πa =

(1− κ)δt1(a) + κδt2(a) for all a ∈ supp(απ) = [a, 1], where t1(a) solves κφ([0, t1(a)]) =

(1−κ)φ([a, 1]), and a solves κφ([0, a]) = (1−κ)φ([a, 1]). See Section C.6 for the proof.

34In Examples 2 and 4 and Section 8.1, Θ and A are compact intervals, which can be rescaled to

the unit interval.
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A notable feature of this outcome is that, with the informed receiver interpretation, it

would remain optimal even if the sender knew the receiver’s type and could condition

disclosure on it.

Example 4 (A Stochastic Optimal Signal35). Consider the translation-invariant simple

sender subcase. Let A = Θ = [−1, 3], let φ have a density f with f(−a) ≥ 3f(3a) for

all a ∈ (0, 1], let u(a, θ) = T (θ − a) with T (0) = 0 and strictly log-concave T ′; and

let V (a, θ) = T (2a). With the informed receiver interpretation, this captures a case

where, for example, κ = 1/2, the distribution of ε is N(0, σ2), and the distribution of

t is N(0, (σ/2)2).36

We claim that AΓ = [−1, 1] and Γa = {t1(a), t2(a)} for all a ∈ AΓ where

t1(a) =

$
%

&
a, a ∈ [−1, 0],

−a, a ∈ (0, 1],
and t2(a) =

$
%

&
a, a ∈ [−1, 0),

3a, a ∈ (0, 1],

so that πa = ρaδt1(a)+(1−ρa)δt2(a) with ρa = 1/2 for all a ∈ AΓ, and απ has a density

h given by

h(a) =

$
%

&
6f(3a), a ∈ (0, 1],

f(−a)− 3f(3a), a ∈ [−1, 0).

Note that the unique optimal outcome is single-dipped negative assortative iff f(−a) =

3f(3a) for all a ∈ (0, 1]. In contrast, if f(−a) > 3f(3a) for all a ∈ (0, 1], then each

state θ ∈ [−1, 0) is mixed between recommendations a = θ and a = −θ. Specifically,

the conditional distribution πθ of a given θ is

πθ =

$
%

&
δθ/3, θ ∈ [0, 3],

f(θ)−3f(−3θ)
f(θ)

δθ +
3f(−3θ)
f(θ)

δ−θ, θ ∈ [−1, 0).

See Figure 3. Note that in this case the unique optimal signal randomizes conditional

on the state, even though the state is atomless. See Section C.7 for the proof.

35This example is an adaptation of Example 2 in Kolotilin and Wolitzky (2020).
36By symmetry and strict log-concavity of T ′, va(a)/v(a) = 2T ′′(a)/T ′(a) > (<)T ′′(0)/T ′(0) = 0

for 0 > (<)a, showing that (10) fails for a < 0, and thus Theorem 7 does not apply.
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θ
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Figure 3. The Optimal Outcome in Example 4

Notes: The contact set equals the three black line segments. The red

line segments indicate pairs of states that may be pooled at an optimal

outcome. If the prior density satisfies f(−a) > 3f(3a) for all a ∈ (0, 1],

the unique optimal outcome is supported on the entire contact set. In

this case, for each state θ < 0, the unique optimal signal randomizes

between disclosing θ (inducing action θ) and pooling θ with state −3θ

(inducing action −θ).

8. Applications and Extensions

This section shows how our analysis can accommodate several well-known applica-

tions in the persuasion literature, where single-dipped or single-peaked disclosure is

optimal.37 These applications also illustrate some new technical points. Section 8.1

illustrates how directly applying Theorem 3 can yield weaker sufficient conditions for

the optimality of single-dipped/-peaked disclosure than those presented in Theorem

4. Sections 8.2 and 8.3 illustrate how our analysis extends when some of our assump-

tions are violated. In Sections 8.2, Assumption 3 fails, so the receiver’s optimal action

may be at the boundary and thus violate the first-order condition. In Section 8.3,

Assumption 5 fails, so the sender only weakly prefers higher actions.

37We have already described how our results generalize those of Friedman and Holden (2008) in

the gerrymandering literature and Beiglböck and Juillet (2016) and others in the martingale optimal

transport literature.
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8.1. Contests. Zhang and Zhou (2016) study information disclosure in contests. In

their model, two contestants, A and B, compete for a prize by exerting efforts xA and

xB. The probability that contestant i = A,B wins is xi/(xA + xB). Everyone knows

contestant A’s value vA = 1. Contestant B’s value vB is known to contestant B and

the designer. The sender designs a signal about vB to maximize expected total effort.

It is convenient to parameterize θ = 1/
√
vB and a =

√
xA. With this parameteriza-

tion, Zhang and Zhou’s Proposition 1 shows that, given a posterior µ, contestant A

exerts effort x"
A = a"(µ)2 determined by Eµ [θ − (1 + θ2) a"(µ)] = 0, and contestant B

(who knows θ) exerts effort x"(θ) = a"(µ)/θ− a"(µ)2, so the sender’s expected utility

is x"
A + Eµ [x

"(vB)] = Eµ [a
"(µ)/θ]. We thus recover our model with V (a, θ) = a/θ

and u(a, θ) = θ − (1 + θ2)a.

Zhang and Zhou give results on optimality of pairwise disclosure, full-disclosure, and

no-disclosure. Our approach easily yields the following result, which additionally gives

conditions for optimality of single-dipped/-peaked disclosure and negative assortative

disclosure, possibilities not considered by Zhang and Zhou.38

Proposition 1. Let φ have a density on Θ = [θ, θ] where 0 < θ < θ. If θ ≥ 1, then

the unique optimal outcome is full disclosure. If θ ≤ 1/
√
3 (1/

√
3 ≤ θ < θ ≤ 1), then

the unique optimal outcome is single-dipped (-peaked) negative assortative disclosure.

The proof of single-dippedness/-peakedness uses Theorem 3 with a perturbation that

fixes both actions. In contrast, directly applying Theorem 4 would yield only the

weaker result that single-peaked negative assortative disclosure is optimal if 1/
√
2 ≤

θ < θ < 1.39

8.2. Affiliated Information. Guo and Shmaya (2019) consider a persuasion model

with a privately informed receiver, where it is commonly known that the receiver

wishes to accept a proposal iff θ exceeds a threshold θ0, and the receiver’s type t

is his private signal of θ. Letting G(t|θ) denote the distribution of t conditional on

θ, with corresponding density g(t|θ), this setup maps to our model with V (a, θ) =

38Zhang and Zhou assume that φ is discrete; we instead assume that φ is continuous.
39To see this, suppose θ < 1. Then uθ(a, θ) = 1 − 2θa > 0 for a ≤ θ/(1 + θ2) = maxA.

Moreover, uaθ(a, θ)/uθ(a, θ) = −2θ/(1 − 2θa) is always decreasing in θ, while vθ(a2, θ)/uθ(a1, θ) =

−1/(θ2 − 2θ3a1) is decreasing in θ iff 3θminA = 3θ2/(1 + θ2) ≥ 1, or equivalently θ ≥ 1/
√
2.
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G(a|θ), u(a, θ) = (θ−θ0)g(a|θ), and g(t|θ) strictly log-submodular in (t, θ).40,41 These

preferences satisfy Assumptions 1, 2 (see Lemma 4), 4, and 5, but not Assumption 3,

as u(a, θ) > 0 for all a when θ > θ0. Nonetheless, assuming that the receiver breaks

ties in the sender’s favor, we have a"(µ) = max{a :
"
Θ
u(a, θ)dµ ≥ 0}.

Let us take for granted that Theorem 3 holds even though Assumption 3 is violated

(e.g., this is clearly true if Θ is finite). We then obtain the following result, which

reproduces the main qualitative insight of Guo and Shmaya.

Proposition 2. Every optimal outcome is single-peaked.

The proof uses Theorem 3 with a perturbation that fixes one action while increasing

the other action and the sender’s expected utility (for fixed actions). Specifically, let

y =

$
000%

000&

1
0, 1

(θ2−θ0)g(a2|θ2) ,
1

(θ2−θ0)g(a2|θ3)

2
, θ2 > θ0,

(0, 1, 0) , θ2 = θ0,1
1

(θ0−θ1)g(a1|θ1) ,
1

(θ0−θ2)g(a1|θ2) , 0
2
, θ2 < θ0,

where θ1 < θ2 < θ3, a2 < a1, and θ1 ≤ θ0 ≤ θ3. We focus on the case θ0 < θ2, as the

other cases are analogous. The above perturbation increases action a1, because, by

strict log-submodularity of g,

u(a1, θ2)y2 − u(a1, θ3)y3 =
g(a1|θ2)
g(a2|θ2)

− g(a1|θ3)
g(a2|θ3)

> 0.

The intuition is that, since a type-a2 receiver is more optimistic about the state than

a type-a1 receiver, he assigns higher prior probability to θ3 relative to θ2. He therefore

finds a signal that puts more weight on θ3 relatively more persuasive, while the more

pessimistic type-a2 receiver is more persuaded by a signal that puts more weight on θ2.

Moreover, the same perturbation also increases the sender’s expected utility for fixed

40The ordering convention here is that high t is bad news about θ. This convention is opposite

to Guo and Shmaya’s, but it is dictated by our convention that the receiver accepts for types below

a cutoff.
41Inostroza and Pavan (2022) study robust stress test design in a setting with multiple receivers

with coordination motives. As they note, the single-receiver version of their model is a special case

of Guo and Shmaya (2019).
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a1, a2, because

(V (a1, θ2)− V (a2, θ2))y2 − (V (a1, θ3)− V (a2, θ3))y3

=

.
G(a1|θ2)−G(a2|θ2)
(θ2 − θ0)g(a2|θ2)

− G(a1|θ3)−G(a2|θ3)
(θ3 − θ0)g(a2|θ3)

/

>
1

(θ2 − θ0)

.
G(a1|θ2)−G(a2|θ2)

g(a2|θ2)
− G(a1|θ3)−G(a2|θ3)

g(a2|θ3)

/

=
1

(θ2 − θ0)

! a1

a2

.
g(t|θ2)
g(a2|θ2)

− g(t|θ3)
g(a2|θ3)

/
dt ≥ 0,

where the first inequality is by θ0 < θ2 < θ3 and the second inequality is by log-

submodularity of g. Thus, every optimal outcome is single-peaked.42

Notice that when Assumption 3 fails, condition (6) cannot hold for all µ, because

there exist states θ1 ∕= θ2 such that either (i) u(a, θ1) > 0 and u(a, θ2) > 0 for all a, so

that a"(ρδθ1 + (1− ρ)δθ2) = 1 for all ρ ∈ [0, 1] or (ii) u(a, θ1) < 0 and u(a, θ2) < 0 for

all a, so that a"(ρδθ1 + (1 − ρ)δθ2) = 0 for all ρ ∈ [0, 1]. In both cases, we obviously

have, for all ρ ∈ [0, 1],

ρV (a"(µ), θ1) + (1− ρ)V (a"(µ), θ2) = ρV (a"(δθ1), θ1) + (1− ρ)V (a"(δθ2), θ2),

so (6) necessarily fails. This suggests the following adjusted requirement when As-

sumption 3 fails: for all θ1, θ2 with u(1, θ1) < 0 < u(0, θ2), condition (6) holds for

some ρ ∈ (0, 1). This requirement is clearly satisfied in Guo and Shmaya (2019), as

then θ1 < θ0 < θ2, so (6) holds for sufficiently small ρ, so that a"(ρδθ1+(1−ρ)δθ2) = 1.

For the case where φ has a density on Θ = [0, 1], Theorem 3.1 in Guo and Shmaya

(2019) implies that the optimal outcome is single-peaked negative assortative, in

the sense that there exist an increasing function t1(a) and a decreasing function

t2(a) such that t1(a) ≤ θ0 ≤ t2(a) and supp(πa) = {t1(a), t2(a)} for all a > 0, and

supp(π0) = [0, t1(0)] (which can be viewed as pooling states [0, t1(0)] with state 1,

which has 0 measure).

8.3. Stress Tests. Goldstein and Leitner (2018) consider a model of optimal stress

tests. The sender is a bank regulator and the receiver is a perfectly competitive

market. The bank has an asset that yields a random cash flow. The asset’s quality

is θ, which is observed by the bank and the regulator but not the market, and is

42The above argument can be extended to show that single-peaked disclosure remains optimal in

the more general setting considered in Section 5.1 of Guo and Shmaya (2019).
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normalized to equal the asset’s expected cash flow.43 The regulator designs a test

to reveal information about θ. After observing the test result, the market offers a

competitive price a for the asset. Finally, the bank decides whether to keep the asset

and receive the random cash flow, or sell it at price a. Letting z denote the bank’s

final cash holding (equal to either the random cash flow or a), the bank’s payoff equals

z + 1{z ≥ θ0}, where θ0 is a constant. An interpretation is that the bank faces a run

if its cash holding falls below θ0. The regulator designs the test to maximize expected

social welfare, or equivalently to minimize the probability of a run.

Goldstein and Leitner show that a bank with a type-θ asset is willing to sell at a price

a iff a exceeds a reservation price σ̃(θ) that satisfies σ̃(θ) > θ if θ < θ0, σ̃(θ) < θ if

θ > θ0, and σ̃′(θ) ≥ 0. Intuitively, if θ < θ0 then the bank demands a premium to

forego the chance that a lucky cash flow shock pushes its holdings above θ0, while if

θ > θ0 then the bank desires insurance against bad cash flow shocks that push its

holdings below θ0. However, the value of the regulator’s problem is unaffected if the

reservation price is re-defined as σ(θ) = θ if θ ≤ θ0 and σ(θ) = σ̃(θ) if θ > θ0, because

it is suboptimal for the regulator to induce a bank to sell at a price below θ0. It is

more convenient to work with the normalized reservation price σ(θ).

It is also convenient to restrict attention to tests that, for each θ, either induce the

bank to sell or fully disclose the bank’s value: this is without loss because if the

regulator pools two asset types that do not sell, then it would be weakly better to

disclose these types. Note that for such a test, the price induced by any posterior µ is

a"(µ) = Eµ[θ], so we are in the simple receiver case. We can capture the requirement

that the bank always sells if a ∕= θ by setting V (a, θ) = −∞ if a < σ(θ). Finally,

letting w(θ) > 0 equal the social gain when a bank sells a type-θ asset at a price

above θ0 (which equals the probability that a type-θ asset yields a cash flow below

θ0), we obtain the simple receiver case of our model with

V (a, θ) =

$
%

&
w(θ)1{a ≥ θ0}, if a ≥ σ(θ),

−∞, otherwise.

Note that V violates Assumptions 1 and 5, as it is discontinuous and only weakly

increasing in a. Nonetheless, if we assume that Θ is a finite set (as do Goldstein and

Leitner), we recover their main qualitative insight.

43This is the model in Section 5 of their paper, where the bank observes θ.
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Proposition 3. Let Θ be finite. There exists an optimal single-dipped outcome.

To prove the proposition, we use a perturbation that fixes both actions. Since V

is only weakly increasing, this perturbation now only weakly increases the sender’s

expected utility. Nonetheless, when Θ is finite, repeatedly apply such perturbations

eventually yields a single-dipped outcome, which is weakly preferred by the sender.

We also note that, as Goldstein and Leitner show, if Eφ[θ] < θ0—so that no-disclosure

does not attain the sender’s first-best outcome—then every optimal outcome is single-

dipped.44

9. Conclusion

This paper has developed a first-order approach to persuasion with non-linear prefer-

ences, based on duality and connections to optimal transport. Our substantive results

provide conditions under which all optimal signals are pairwise, under which higher

actions are induced at more or less extreme states, and under which full or negative

assortative disclosure is optimal. In some cases, we can characterize optimal signals

as the solution to a pair of ordinary differential equations, or even solve them in closed

form.

We close with a few open issues. First, while the persuasion literature has made

progress by allowing unrestricted disclosure policies, the pairwise signals that we

have highlighted are not always realistic. (For example, in reality it is probably not

feasible to design a stress test that pools only the weakest and strongest banks.) An

alternative is to restrict the sender to partitioning the state space into intervals, as in

Rayo (2013) or Onuchic and Ray (2022). An interesting observation is that, at least

in the separable subcase of our model considered by Rayo and Onuchic and Ray, our

condition (6) is equivalent to the statement that complete pooling is uniquely optimal

among monotone partitions for all prior distributions. This suggests that, under our

44A related model by Garcia and Tsur (2021) studies optimal information disclosure to facilitate

trade in an insurance market with adverse selection. Their model can be mapped to the simple

receiver case with V (a, θ) = ν(a) if a ≥ σ(θ) and V (a, θ) = −∞ otherwise, where ν(a) is a strictly

increasing, strictly concave function, and σ is a continuous, strictly increasing function that satisfies

σ(θ) < θ. Considering a similar perturbation as in Goldstein and Leitner shows that single-dipped

negative assortative disclosure is optimal in their model.
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conditions for the optimality of single-dippedness/-peakedness, negative assortative

disclosure might be the optimal unrestricted disclosure policy for all priors if and only

if no-disclosure is the optimal monotone policy for all priors.

Second, in the informed receiver interpretation of our model mentioned in Section 2,

our analysis pertains to disclosure mechanisms that do not first elicit the receiver’s

type, or public persuasion in the language of Kolotilin, Mylovanov, Zapechelnyuk, and

Li (2017). Public persuasion turns out to be without loss in Kolotilin, Mylovanov,

Zapechelnyuk, and Li (2017), as well as in Guo and Shmaya (2019). It would be

interesting to investigate conditions for the optimality of public persuasion in our

more general model, and in particular to see how they relate to our conditions for the

optimality of full or negative assortative disclosure.

Finally, our model could be generalized to allow multidimensional states or actions.

We suspect that the results of Sections 3–5 can be generalized, although our analysis is

facilitated by the existence of a bijection between actions a and states θ"(a) such that

u(a, θ"(a)) = 0 (cf. Assumption 4). Generalizing the other results would require a

more general notion of single-dippedness/-peakedness. With a unidimensional action

and a multidimensional state, one can still define a notion of single-dippedness as

inducing higher actions at more extreme states; the appropriate generalization with

multidimensional actions is unclear.45 For results on multidimensional persuasion

focusing on the simple case, see Dworczak and Kolotilin (2022).
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A. Characterization of Aggregate Quasi-Concavity

We present two alternative conditions that are equivalent to strict aggregate quasi-

concavity of U . Condition (2) is analogous to the “signed-ratio monotonicity” con-

ditions in Theorem 1 of Quah and Strulovici (2012) and in Corollary 2 of Choi and

Smith (2017) for weak aggregate quasi-concavity. We give a shorter proof based on

the optimality of pairwise signals. Condition (3) is novel. It corresponds to strict

concavity of U , ua(a, θ) < 0, up to a normalizing factor g(a) > 0.

Lemma 4. Let Assumption 1 hold. The following statements are equivalent:

(1) Assumption 2 holds.

(2) For all θ, θ′, and a, we have

u(a, θ) = 0 =⇒ ua(a, θ) < 0, (11)

u(a, θ) < 0 < u(a, θ′) =⇒ u(a, θ′)ua(a, θ)− u(a, θ)ua(a, θ
′) < 0. (12)

(3) There exists a differentiable function g(a) > 0 such that ũ(a, θ) = u(a, θ)/g(a)

satisfies ũa(a, θ) < 0 for all (a, θ).

Proof. (1) =⇒ (2). It is easy to see that Assumption 2 for µ = δθ such that

u(a, θ) = 0 yields (11). Similarly, Assumption 2 for µ = ρδθ + (1 − ρ)δθ such that

u(a, θ) < 0 < u(a, θ′) and ρu(a, θ) + (1− ρ)u(a, θ′) = 0 yields (12).
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(2) =⇒ (1). We rely on the following lemma, which follows immediately from

the Choquet Theorem (Theorem 3.1 in Winkler 1988) and the Richter-Rogosinsky

Theorem (Theorem 2.1 in Winkler 1988).

Lemma 5. Let Assumptions 1 and 2 hold. For any a ∈ A and µ ∈ ∆(Θ) such

that
"
u(a, θ)dµ = 0, there exists λµ ∈ ∆(∆(Θ)) such that

"
ηdλµ = µ and for each

η ∈ supp(λµ) we have
"
u(a, θ)dη = 0 and | supp(η)| ≤ 2.

Since each such η can be written as η = ρδθ + (1 − ρ)δθ′ for some θ, θ′ ∈ Θ and

ρ ∈ [0, 1] such that

ρu(a, θ) + (1− ρ)u(a, θ′) = 0, (13)

it suffices to show that

ρua(a, θ) + (1− ρ)ua(a, θ
′) < 0. (14)

There are two cases to consider. First, if ρu(a, θ) = 0, then (14) follows from (11)

and (13). Second, if ρu(a, θ) ∕= 0, then (14) follows from (12) and (13).

(3) =⇒ (1). Notice that
!

u(a, θ)dµ = 0 ⇐⇒
!

ũ(a, θ)dµ = 0.

Hence, if ũa(a, θ) < 0 for all (a, θ) and
"
u(a, θ)dµ = 0, then

!
ua(a, θ)dµ = g(a)

!
ũa(a, θ)dµ+ g′(a)

!
ũ(a, θ)dµ = g(a)

!
ũa(a, θ)dµ < 0,

yielding Assumption 2.

(1) =⇒ (3). We rely on the following lemma.

Lemma 6. If Assumptions 1 and 2 hold, then there exists a continuous function γ(a)

such that

ua(a, θ) + γ(a)u(a, θ) < 0, ∀(a, θ) ∈ A×Θ. (15)

Given this lemma, the required g is given by

g(a) = e−
" a
0 γ(ã)dã,

as follows from

ũa(a, θ) =
∂

∂a

.
u(a, θ)

e−
" a
0 γ(ã)dã

/
=

ua(a, θ) + γ(a)u(a, θ)

e−
" a
0 γ(ã)dã

< 0.
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Proof of Lemma 4. Fix a ∈ [0, 1]. Let M+([0, 1]) be the set of positive Borel measures

on [0, 1]. Define the set C ⊂ R3 as follows

C =

3.!
u(a, θ)dµ,

!
ua(a, θ)dµ− z,

!
dµ

/ '' µ ∈ M+([0, 1]), z ≥ 0

4
.

Clearly, C is a convex cone.

Moreover, C is closed, because u(a, θ) and ua(a, θ) are continuous in θ. To see this,

let sequences µn ∈ M+([0, 1]) and zn ∈ Rn
+ be such that

!
u(a, θ)dµn → c1,

!
ua(a, θ)dµn − zn → c2,

!
dµn → c3

for some (c1, c2, c3) ∈ R3. It follows from
"
dµn → c3 that all µn belong to a compact

subset of positive measures whose total variation is bounded by supn

"
dµn, and

hence, up to extraction of a subsequence, µn → µ ∈ M+([0, 1]), with
"
dµ = c3. Since

u(a, θ) and ua(a, θ) are continuous in θ, we get
"
u(a, θ)dµn →

"
u(a, θ)dµ = c1 and

"
ua(a, θ)dµn →

"
ua(a, θ)dµ. Hence, zn →

"
ua(a, θ)dµ− c2 = z ≥ 0. In sum,

!
u(a, θ)dµ = c1,

!
ua(a, θ)dµ− z = c2,

!
dµ = c3,

showing that C is closed.

Next, notice that Assumption 2 implies that (0, 0, 1) /∈ C. Thus, by the separation

theorem (e.g., Corollary 5.84 in Aliprantis and Border 2006), there exists y ∈ R3 such

that, for all µ ∈ M+([0, 1]) and z ≥ 0,

0y1 + 0y2 + 1y3 < 0 ≤
.!

u(a, θ)dµ

/
y1 +

.!
ua(a, θ)dµ− z

/
y2 +

.!
dµ

/
y3,

or equivalently

u(a, θ)y1 + ua(a, θ)y2 + y3 ≥ 0, for all θ ∈ [0, 1],

−y2 ≥ 0,

y3 < 0.

(16)

We now show that there exists a scalar γ(a) ∈ R satisfying

ua(a, θ) + γ(a)u(a, θ) < 0, for all θ ∈ [0, 1]. (17)

There are two cases. First, if y2 < 0 then γ(a) = y1/y2 ∈ R satisfies (17). Second, if

y2 = 0 then (16) implies that

u(a, θ)y1 ≥ −y3 > 0, ∀θ ∈ [0, 1].
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Thus, we have either (i) u(a, θ) > 0 for all θ ∈ [0, 1], so, taking into account continuity

of u(a, θ) and ua(a, θ) in θ,

γ(a) = min
θ∈[0,1]

3
−ua(a, θ)

u(a, θ)

4
− 1 ∈ R

satisfies (17); or (ii) u(a, θ) < 0 for all θ ∈ [0, 1], so

γ(a) = max
θ∈[0,1]

3
−ua(a, θ)

u(a, θ)

4
+ 1 ∈ R

satisfies (17).

It remains to show that if for all a ∈ [0, 1] there exists γ(a) ∈ R satisfying (17),

then there exists a continuous function γ̃ : [0, 1] → R satisfying (17). Define a

correspondence ϕ : [0, 1] ⇒ R,

ϕ(a) = {r ∈ R : ua(a, θ) + ru(a, θ) < 0, ∀θ ∈ [0, 1]}.

Note that ϕ is nonempty valued by assumption, and is clearly convex valued. In

addition, ϕ has open lower sections, because for each r ∈ R the set

{a ∈ [0, 1] : ua(a, θ) + ru(a, θ) < 0, ∀θ ∈ [0, 1]}

is open, since ua and u are continuous on the compact set [0, 1] × [0, 1]. Thus, by

Browder’s Selection Theorem (Theorem 17.63 in Aliprantis and Border 2006), ϕ ad-

mits a continuous selection γ̃, which by construction satisfies (17). □

□

B. Proofs

B.1. Proof of Lemma 1. The proofs of primal attainment and strong duality (points

1 and 3 in the lemma) are standard and are deferred to the Online Appendix. Here

we prove dual attainment (point 2).

For any nonempty, compact interval I ⊂ R, let B (A, I) denote the set of bounded,

measurable functions q such that q (A) ⊂ I. Define

FI =

3
p ∈ RΘ : ∃q ∈ B (A, I) , ∀θ ∈ Θ, p (θ) = sup

a∈A
{V (a, θ) + q (a) u (a, θ)}

4
,
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and consider the problem

inf

3!

Θ

p(θ)dφ(θ) : p ∈ FI

4
. (D’)

(D’) is a reformulated version of (D) that involves only the function p. Denote the

value of (D) by D, and denote the value of (D’) (which depends on the interval I)

by D′
I. We first show that there exists a solution p ∈ FI to (D’) and that p, together

with any measurable selection q from Q, is feasible for (D) (Lemma 9). Finally, we

show that for a sufficiently large interval I = [−C,C], D = D′
I (Lemma 10), so (p, q)

solve (D).

For the moment, let I = [−C,C] for an arbitrary choice of C > 0. The existence of

a solution to (D’) relies on the following lemma.

Lemma 7. The family of functions FI is uniformly bounded and equicontinuous.

Thus, there exists a convergent sequence pn → p such that pn ∈ FI for all n, p ∈ C(Θ),

and
"
pdφ = D′

I.

Proof. For each p ∈ FI , there exists q ∈ B (A, I) such that p (θ) = supa∈A {V (a, θ) + q (a) u (a, θ)}
for all θ ∈ Θ, and thus

sup
θ∈Θ

|p(θ)| ≤ sup
(a,θ)∈A×Θ

|V (a, θ) + q (a) u (a, θ)| ≤ sup
(a,θ,r)∈A×Θ×I

|V (a, θ) + ru (a, θ)| ,

This upper bound is finite by compactness of A× Θ× I and continuity of V and u,

so the family of functions FI is uniformly bounded.

Next, since V and u are continuous on the compact set A × Θ, they are uniformly

continuous on A×Θ. This implies that there exists an increasing, continuous function

w : R+ → R+ (known as the modulus of continuity) such that w (0) = 0 and, for

every θ, θ′ ∈ Θ and a ∈ A, we have

|V (a, θ) + q(a)u (a, θ)− V (a, θ′)− q(a)u (a, θ′)|

≤ |V (a, θ)− V (a, θ′)|+ |q(a)| |u (a, θ)− u (a, θ′)|

≤ |V (a, θ)− V (a, θ′)|+ C |u (a, θ)− u (a, θ′)|

≤w (d (θ, θ′)) ,
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where d(θ, θ′) denotes the distance between θ, θ′ ∈ Θ. We claim that for all p ∈ FI

and θ, θ′ ∈ Θ, we have |p(θ)− p(θ′)| ≤ w(d(θ, θ′)). Indeed, for each a ∈ A,

p(θ) = sup
ã∈A

{V (ã, θ) + q (ã) u (ã, θ)}

≥V (a, θ) + q (a) u (a, θ)

≥V (a, θ′) + q (a) u (a, θ′)− w (d (θ, θ′)) .

Taking the supremum over a ∈ A gives p(θ) ≥ p(θ′) − w(d(θ, θ′)), and switching

the roles of θ and θ′ gives |p(θ) − p(θ′)| ≤ w(d(θ, θ′)). Consequently, the family of

functions FI is equicontinuous.

Now consider a minimizing sequence pn ∈ FI such that
"
pn(θ)dφ(θ) → D′

I. Since Θ is

compact, and FI is uniformly bounded and equicontinuous, Arzelà-Ascoli’s theorem

implies that there exists a subsequence pnk
uniformly converging to some function

p ∈ C(Θ), and thus
"
pnk

(θ)dφ(θ) →
"
p(θ)dφ(θ) = D′

I. □

Now fix p ∈ C(Θ) as in Lemma 7. To show that p ∈ FI , recall the correspondence

Q (a) = {r ∈ I : ∀θ ∈ Θ, p (θ) ≥ V (a, θ) + ru (a, θ)} ∀a ∈ A. (18)

We first derive some properties of this correspondence, which will also be used in the

subsequent analysis.46

Lemma 8. The correspondence Q is nonempty, convex and compact valued, and

upper hemicontinuous, and hence admits a measurable selection q.

Proof. By Lemma 7, there exists a sequence pn ∈ FI , such that pn → p uniformly.

For every n ∈ N, define

Qn (a) = {r ∈ I : ∀θ ∈ Θ, pn (θ) ≥ V (a, θ) + ru (a, θ)} ∀a ∈ A.

For every a ∈ A and n ∈ N, we have Qn (a) ∕= ∅ since pn ∈ FI . Fix a ∈ A, and

for every n ∈ N fix rn ∈ Qn (a) ⊂ I. Since I is compact, there exists a convergent

subsequence rnk
→ r with r ∈ I. For all k ∈ N, we have pnk

(θ) ≥ V (a, θ)+rnk
u (a, θ)

for all θ ∈ Θ, which implies that p (θ) ≥ V (a, θ) + ru (a, θ) for all θ ∈ Θ. This shows

that r ∈ Q (a). Since a was arbitrary, it follows that Q is nonempty valued.

46In the current proof, the correspondence Q is defined in reference to the price function p defined

in Lemma 7. In the text, Q is defined in reference to an optimal price function. We will see that p

is indeed optimal, so the definitions are equivalent.
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Next, for all a ∈ A, Q(a) is closed because V and u are continuous, and Q(a) is

convex because it is defined by a linear inequality. Now consider a sequence (an, rn)

in the graph of Q such that (an, rn) → (a, r). For every n ∈ N, we have p (θ) ≥
V (an, θ) + rnu (an, θ) for all θ ∈ Θ. By continuity of V and u, this implies that

p (θ) ≥ V (a, θ) + ru (a, θ) for all θ ∈ Θ. This shows that (a, r) is in the graph of

Q. By the closed-graph theorem, the correspondence Q is upper hemicontinuous.

Finally, by Theorem 18.20 in Aliprantis and Border (2006), Q admits a measurable

selection q. □

We next show that (p, q) is feasible for (D), for any measurable selection q from Q.

Consider the problem

inf

3!
p(θ)dφ(θ) : p ∈ C (Θ) , ∃q ∈ B (A, I) such that (p, q) satisfy (D1).

4
(D”)

Denote the the value of (D”) by D′′
I

Lemma 9. For every measurable selection q from Q, we have

p (θ) = sup
a∈A

{V (a, θ) + q (a) u (a, θ)} ∀θ ∈ Θ,

and hence p ∈ FI , and (p, q) satisfy (D1). Therefore, D′
I = D′′

I .

Proof. Fix a measurable selection q fromQ, and let p̂(θ) := supa∈A {V (a, θ) + q (a) u (a, θ)}
for all θ ∈ Θ. Note that p̂ ∈ FI ⊂ C(Θ), and that p(θ) ≥ p̂(θ) for all θ ∈ Θ by con-

struction of Q. Conversely, if p̂(θ) < p(θ) for some θ ∈ Θ, then
"
Θ
p̂ (θ) dφ (θ) <

"
Θ
p (θ) dφ (θ) (by continuity of p and p̂, together with full support of φ), which

contradicts the definition of p. Hence, p = p̂, establishing the first part of the

lemma. Next, since p is continuous and (p, q) satisfy (D1) for every selection q from

Q, p is feasible for (D”). Moreover, for any p̃ ∈ C (Θ) that satisfies (D1) for some

q ∈ B (A, I), the function p̂ defined above satisfies p̂ (θ) ≤ p̃ (θ) for all θ ∈ Θ, so we

have
"
pdφ ≤

"
p̂dφ ≤

"
p̃dφ. Hence, p solves (D”), and D′′

I = D′
I. □

The following lemma implies that for a sufficiently large interval I = [−C,C], we

have D = D′′
I , so that the pair (p, q) constructed in Lemma 9 solve (D). This proves

dual attainment.

Lemma 10. There exists C > 0 such that D = D′′
I , where I = [−C,C].
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Proof. It is enough to find C > 0 such that the additional constraint q(a) ∈ [−C,C]

for all a ∈ A is non-binding in (D).

Define

#q(a, θ) =

$
%

&

v(a,θ)
−ua(a,θ)

, u(a, θ) = 0,

V (a!(δθ),θ)−V (a,θ)
u(a,θ)

, u(a, θ) ∕= 0.

Recall that Assumption 2 requires that ua(a, θ) < 0 when u(a, θ) = 0; so q̃(a, θ) is

well-defined. Since a"(δθ) is a unique maximizer of a continuous function U(a, θ), it

is continuous in θ by Berge’s theorem.

We now prove that #q is continuous at each (a, θ) ∈ A × Θ. First, #q is continuous at

each (a, θ) such that u(a, θ) ∕= 0, because V , u, and a" are continuous. Next, consider

(a, θ) such that u(a, θ) = 0, or equivalently a = a"(δθ). For each (a′, θ′) ∈ A × Θ,

there exists â between a"(δθ′) and a′ such that

[V (a"(δθ′), θ
′)− V (a′, θ′)]ua(â, θ

′) = −v(â, θ′)u(a′, θ′),

by the mean value theorem applied to the function

[V (a"(δθ′), θ
′)− V (ã, θ′)]u(a′, θ′)− [V (a"(δθ′), θ

′)− V (a′, θ′)]u(ã, θ′),

where the argument ã is between a"(δθ′) and a′. Thus,

#q(a′, θ′)− #q(a, θ) = v(â, θ′)

−ua(â, θ′)
− v(a, θ)

−ua(a, θ)
.

If (a′, θ′) → (a, θ) then (â, θ′) → (a, θ), because a"(δθ) is continuous in θ. Hence,

#q(a′, θ′) → #q(a, θ), because v and ua are continuous. This shows that #q is continuous

on A×Θ.

Next, define

C = min
(a,θ)∈A×Θ

#q(a, θ) and C = max
(a,θ)∈A×Θ

#q(a, θ),

where C and C are finite because #q is continuous on the compact set A × Θ. To

see why the constraint q(a) ≤ C is non-binding, notice that decreasing q(a) weakly

tightens (D1) for θ such that u(a, θ) < 0, and weakly relaxes (D1) for θ such that

u(a, θ) ≥ 0. If q(a) > C and u(a, θ) < 0, then V (a, θ) + q(a)u(a, θ) < V (a"(δθ), θ), so

decreasing q(a) to C does not strictly tighten (D1), because p(θ) ≥ V (a"(δθ), θ) by

feasibility. Thus, since the dual objective function does not depend on q(a), adding

the constraint q(a) ≤ C does not affect the value of (D). Similarly, increasing q(a) to
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C does not strictly tighten (D1) for θ such that u(a, θ) > 0, and weakly relaxes (D1)

for θ such that u(a, θ) ≤ 0; so we can add the non-binding constraint q(a) ≥ C.

In sum, adding the constraint q (A) ⊂ I = [−C,C] where C = max{|C|, |C|} does

not alter the value of (D), so D = D′′
I . □

B.2. Proof of Theorem 1. Let

q̊(a) =
minQ(a) + maxQ(a)

2
.

Define the set of a-contact points of type 1 as

Ψ1 = {a ∈ A : θ"(a) ∈ Θ and p(θ"(a)) = V (a, θ"(a))},

and the set of a-contact points of type 2 as

Ψ2 = {a ∈ A \Ψ1 : ∃θ ∈ Θ : p(θ) = V (a, θ) + q̊(a)u(a, θ)}.

Note that

q(a) =

$
%

&

v(a,θ!(a))
−ua(a,θ!(a))

, a ∈ Ψ1,

q̊(a), otherwise.

Part (1) of the theorem follows from Lemmas 11–16, and part (2) of the theorem

follows from Lemmas 17 and 18.

Lemma 11. Γa is non-empty iff a ∈ Ψ1 ∪Ψ2. That is, Ψ1 ∪Ψ2 = AΓ.

Proof. Clearly, θ"(a) ∈ Γa if a ∈ Ψ1. By the definition of Ψ2, Γa is non-empty if

a ∈ Ψ2, and Γa is empty if a /∈ Ψ1 ∪Ψ2. □

Lemma 12. (p,q) solves (D).

Proof. Note that q ∈ B(A), as follows from the proof of Lemma 10 (measurability of

q follows from continuity of p, v, ua, and θ"). Thus, by Lemma 9, it suffices to show

that q(a1) ∈ Q(a1) for each a1 ∈ Ψ1: that is,

p(θ) ≥ V (a1, θ) + q(a1)u(a1, θ) for all a1 ∈ Ψ1 and θ ∈ Θ.

Fix any a1 ∈ Ψ1 and θ ∈ Θ, and let θ1 = θ"(a1). For any ε ∈ (0, 1), define aε ∈ A as

a unique solution to

(1− ε)u(aε, θ1) + εu(aε, θ) = 0.
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By the implicit function theorem,

lim
ε↓0

aε − a1
ε

=
u(a1, θ)

−ua(a1, θ1)
.

By (D1), we have

V (a1, θ1) ≥ V (aε, θ1) + q̊(aε)u(aε, θ1) and p(θ) ≥ V (aε, θ) + q̊(aε)u(aε, θ).

Adding the first inequality multiplied by 1 − ε and the second inequality multiplied

by ε, and taking into account the definition of aε, we get

p(θ) ≥ V (a1, θ) +
(1− ε)[V (aε, θ1)− V (a1, θ1)] + ε[V (aε, θ)− V (a1, θ)]

ε
.

Taking the limit ε → 0 gives

p(θ) ≥ V (a1, θ) +
v(a1, θ1)

−ua(a1, θ1)
u(a1, θ) = V (a1, θ) + q(a1)u(a1, θ).

□

Lemma 13. For each a ∈ Ψ1, we have inf Γa ≤ θ"(a) ≤ supΓa. For each a ∈ Ψ2, we

have θ"(a) /∈ Γa, inf Γa < θ"(a) < supΓa, and q̊(a) = minQ(a) = maxQ(a).

Proof. We have θ"(a) ∈ Γa ⊂ [inf Γa, supΓa] for each a ∈ Ψ1, by the definition of Ψ1.

Fix a ∈ Ψ2. By the definition of Ψ2, we have a /∈ Ψ1, so

p(θ"(a)) > V (a, θ"(a)) = V (a, θ"(a)) + q̊(a)u(a, θ"(a)),

showing that θ"(a) /∈ Γa. By the definition of Ψ2, Γa is non-empty, so it contains

some θ ∕= θ"(a). Suppose for concreteness that θ > θ"(a), so we write θ = θ+ (the

case θ < θ"(a) is analogous and omitted). By the definition of q̊(a) and Q(a),

q̊(a) ≤ maxQ(a) ≤ p(θ+)− V (a, θ+)

u(a, θ+)
,

and, by the definition of Γa,

q̊(a) =
p(θ+)− V (a, θ+)

u(a, θ+)
.

Hence,

q̊(a) = maxQ(a) =
p(θ+)− V (a, θ+)

u(a, θ+)
.

Then,

q̊(a) = minQ(a) = sup
θ̃<θ!(a)

V (a, θ̃)− p(θ̃)

−u(a, θ̃)
,
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where the first equality is by the definition of q̊(a) and q̊(a) = maxQ(a), and

the second equality is by the definition of Q(a). (Inspecting the definition gives

minQ(a) = supθ̃:u(a,θ̃)<0(V (a, θ̃)− p(θ̃))/(−u(a, θ̃)), and u(a, θ̃) < 0 iff θ̃ < θ"(a).)

Since p, V , and u are continuous and since p(θ"(a)) > V (a, θ"(a)), the supremum is

attained at some θ− < θ"(a). Thus θ− ∈ Γa, by the definition of Γa. The lemma

follows since inf Γa ≤ θ− < θ"(a) < θ+ ≤ supΓa. □

Lemma 14. For each a ∈ Ψ1 ∪Ψ2 such that inf Γa < θ"(a) < supΓa, the function q

has a derivative q′(a), and (1) holds for all θ ∈ Γa.

Proof. Fix a ∈ Ψ1 ∪ Ψ2 such that there exist θ−, θ+ ∈ Γa with θ− < θ"(a) < θ+. By

(D1) and the definition of Γ, for every ã ∈ A, we have

V (a, θ−) + q(a)u(a, θ−) ≥ V (ã, θ−) + q(ã)u(ã, θ−).

Therefore, for every ã > a, we have

q(ã)− q(a)

ã− a
≥ 1

−u(ã, θ−)

5
V (ã, θ−)− V (a, θ−)

ã− a
+ q(a)

u(ã, θ−)− u(a, θ−)

ã− a

6
.

Since V and u have continuous partial derivatives in a, we have

q′
+
(a) := lim inf

ã↓a

q(ã)− q(a)

ã− a
≥ C−,

where

C− = − 1

u(a, θ−)
[v(a, θ−) + q(a)ua(a, θ−)].

Applying a similar argument for θ = θ− and ã < a, we get

q′−(a) := lim sup
ã↑a

q(ã)− q(a)

ã− a
≤ C−.

Similarly, considering θ = θ+ with ã > a and ã < a, we get

q′+(a) := lim sup
ã↓a

q(ã)− q(a)

ã− a
≤ C+ and q′−(a) := lim inf

ã↑a

q(ã)− q(a)

ã− a
≥ C+,

where

C+ = − 1

u(a, θ+)
[v(a, θ+) + q(a)ua(a, θ+)].

In sum, we have

C− ≤ q′
+
(a) ≤ q′+(a) ≤ C+ and C+ ≤ q′−(a) ≤ q′−(a) ≤ C−.



PERSUASION AS MATCHING 55

We see that C− = C+ and all four Dini derivatives of q at a coincide, so q has a

derivative q′(a) at a that satisfies q′(a) = C− = C+.

Since θ−, θ+ ∈ Γa are arbitrary, the lemma follows for θ ∈ Γa with θ ∕= θ"(a). For

θ ∈ Γa with θ = θ"(a), we have a ∈ Ψ1, and the lemma follows by the definition of

q(a). □

Lemma 15. The sets Γ and Ψ1 ∪Ψ2 are compact.

Proof. To show that Γ is compact, we need to show that if (an, θn) → (a, θ) with

(an, θn) ∈ Γ, then (a, θ) ∈ Γ. By Lemma 11, Γa is non-empty iff a ∈ Ψ1 ∪ Ψ2. Thus,

an ∈ Ψ1∪Ψ2. There are three cases to consider, up to taking a suitable subsequence.

(1) an ∈ Ψ1 for all n. Since p, V , and θ" are continuous, the set Ψ1 is closed. Thus,

a ∈ Ψ1. Since (an, θn) ∈ Γ, we have p(θn) = V (an, θn) + q(an)u(an, θn). Since v, ua,

and θ" are continuous, q is continuous on Ψ1. Since p, V , and u are also continuous,

passing to the limit we have p(θ) = V (a, θ) + q(a)u(a, θ), so (a, θ) ∈ Γ.

(2) an ∈ Ψ2 for all n, and a /∈ Ψ1. Since an ∈ Ψ2, we have an /∈ Ψ1, and hence, by

Lemma 13, θ"(an) /∈ Γan . Taking another subsequence if necessary, we can assume

that θn−θ"(an) has the same sign for all n. Suppose for concreteness that θn > θ"(an)

(the case θn < θ"(an) is analogous).

Since an ∈ Ψ2, there exists θ̃n ∈ Γan with θ̃n < θ"(an), by Lemma 13. Taking yet

another subsequence, we can assume that

θ̃n → θ̃ ≤ θ"(a) and q̊(an) → r ∈ Q(a).

(Such a subsequence must exist because A × Θ is compact, θ" is continuous, and Q

is upper hemi-continuous.) Moreover, by continuity of p, V , and u, we have

p(θ̃) = V (a, θ̃) + ru(a, θ̃) and p(θ) = V (a, θ) + ru(a, θ).

Since a /∈ Ψ1, we have θ̃, θ ∕= θ"(a). Thus, θ̃ < θ"(a) < θ. Next, θ > θ"(a) implies

that r = maxQ(a); otherwise, p(θ) < V (a, θ) + maxQ(a)u(a, θ), contradicting the

definition of Q(a). Similarly, θ̃ < θ"(a) implies that r = minQ(a). Hence,

r = minQ(a) = maxQ(a) = q̊(a).

We have p(θ) = V (a, θ) + q̊(a)u(a, θ). Since a /∈ Ψ1, this says that (a, θ) ∈ Γ.
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(3) an ∈ Ψ2 for all n, and a ∈ Ψ1. If θ = θ"(a), then (a, θ) ∈ Γ because p, V , and u are

continuous, and q is bounded. So suppose for concreteness that θ > θ"(a) (the case

θ < θ"(a) is analogous). Taking another subsequence if necessary, we can assume that

θn > θ"(an) for all n. By Lemma 13, for each n there exist θ̃n ∈ Γan with θ̃n < θ"(an).

Taking a subsequence again, we can assume that

θ̃n → θ̃ ≤ θ"(a) and q̊(an) → r ∈ Q(a).

Passing to the limit, we get

p(θ̃) = V (a, θ̃) + ru(a, θ̃) and p(θ) = V (a, θ) + ru(a, θ).

If θ̃ < θ"(a), then as in the previous case r = minQ(a) = maxQ(a). Since q(a) ∈ Q(a)

by Lemma 12, this yields r = q(a), and hence (a, θ) ∈ Γ.

Finally, if θ̃ = θ"(a), then by Lemma 14 and an ∈ Ψ2 we have

v(an, θn) + q̊(an)ua(an, θn) + q̊′(an)u(an, θn) = 0,

v(an, θ̃n) + q̊(an)ua(an, θ̃n) + q̊′(an)u(an, θ̃n) = 0.

Thus,

q̊(an) =
v(an, θ̃n)u(an, θn)− v(an, θn)u(an, θ̃n)

−ua(an, θ̃n)u(an, θn) + ua(an, θn)u(an, θ̃n)
.

As q̊(an) → r and a ∈ Ψ1, passing to the limit we have

r =
v(a, θ"(a))

−ua(a, θ"(a))
= q(a).

This shows that (a, θ) ∈ Γ.

We have shown that Γ is compact. By Lemma 11, Ψ1∪Ψ2 = AΓ, and thus is compact

as the projection of a compact set. □

Lemma 16. An implementable outcome π is optimal iff supp(π) ⊂ Γ.

Proof. For any implementable outcome π, we have, by (P1), (D1), and (P2),
!

Θ

p(θ)dφ(θ) =

!

A×Θ

p(θ)dπ(a, θ)

≥
!

A×Θ

(V (a, θ) + q(a)u(a, θ))dπ(a, θ)

=

!

A×Θ

V (a, θ)dπ(a, θ).
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By Lemma 1, π is optimal iff the inequality holds with equality, or equivalently

π(Γ) = 1. In turn, since Γ is compact, π(Γ) = 1 iff supp(π) ⊂ Γ, because supp(π) is

defined as the smallest compact set of measure one. □

Lemma 17. The set Γ" is Borel, and (1) holds for all (a, θ) ∈ Γ".

Proof. Since Γ is compact, minΓa and maxΓa are measurable functions from AΓ to Θ

that satisfy minΓa,maxΓa ∈ Γa for all a ∈ AΓ. Since θ"(a) is a continuous function

that satisfies minΓa ≤ θ"(a) ≤ maxΓa for all a ∈ AΓ, it follows that Γ" is a Borel

subset of Γ. Finally, if Γ"
a = {θ"(a)} then (1) holds at (a, θ"(a)) by the definition of

q(a); otherwise, minΓa < θ"(a) < maxΓa, so (1) holds at (a, θ) for all θ ∈ Γa = Γ"
a,

by Lemma 14. □

Lemma 18. An implementable outcome π satisfies supp(π) ⊂ Γ iff there exists a

conditional probability πa such that supp(πa) ⊂ Γ"
a and

"
u(a, θ)dπa(θ) = 0 for all

a ∈ supp(απ).

Proof. If an outcome π admits such a conditional probability then π(Γ") = π(Γ) = 1,

so supp(π) ⊂ Γ. Now fix an implementable outcome π such that supp(π) ⊂ Γ. Recall

that απ is the a-marginal distribution. Let πa be any version of the conditional

probability. By (P2) and supp(π) ⊂ Γ, there exists a Borel set Sπ ⊂ supp(απ) with

απ(Sπ) = 1 such that

supp(πa) ⊂ Γa and

!

Θ

u(a, θ)dπa(θ) = 0 for all a ∈ Sπ.

Hence, for each a ∈ Sπ,

either minΓa < θ"(a) < maxΓa or minΓa = θ"(a) = maxΓa.

By definition, Γ"
a coincides with Γa for such a, so

supp(πa) ⊂ Γa = Γ"
a for all a ∈ Sπ.

Finally, for all a ∈ AΓ \ Sπ, we can redefine πa as follows:

πa = ρaδminΓ!
a
+ (1− ρa)δmaxΓ!

a
,

where ρa =
u(a,maxΓ"

a)

u(a,maxΓ"
a)− u(a,minΓ"

a)
1{minΓ"

a < maxΓ"
a}.
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With this definition, πa automatically satisfies the conditions of the lemma for all

a ∈ AΓ \ Sπ. Lastly, since απ(Sπ) = 1, the redefined πa coincides with the original πa

for απ-almost all a, and thus is a valid version of the conditional probability. □

Lemma 19. There exists a unique p ∈ C(Θ) that solves (D).

Proof. Recall that in the main text we take an arbitrary solution p to (D). Then we

select q(a) ∈ Q(a) such that the associated contact set Γ is compact. By the definition

of the contact set, we have

p(θ) = V (a, θ) + q(a)u(a, θ), for all (a, θ) ∈ Γ.

Fix any solution π to (P). By Theorem 1, Σ := supp(π) ⊂ Γ. Let Σa denote the

a-section of Σ. Define the set Σ" ⊂ Σ by letting its a-section be given by

Σ"
a =

$
%

&
{θ"(a)}, θ"(a) ∈ {minΣa,maxΣa},

Σa, otherwise,
for all a ∈ A.

Since Σ ⊂ Γ, we get Σ" ⊂ Γ". By Lemma 18, π(Σ") = 1. Let the projection of Σ" on

Θ be defined as ΘΣ! = {θ ∈ Θ : (a, θ) ∈ Σ" for some a ∈ A}. Then, φ(ΘΣ!) = 1 and

the closure of ΘΣ! is Θ.

Next take any θ ∈ ΘΣ! . If (a"(δθ), θ) ∈ Σ", then p(θ) = V (a"(δθ), θ). Otherwise, by

the definition of Σ", there exist a ∈ A and θ′ ∈ Θ such that (a, θ), (a, θ′) ∈ Σ" and

either θ < θ"(a) < θ′ or θ′ < θ"(a) < θ. Suppose that θ < θ"(a) < θ′ (the other case

is analogous and omitted). By Theorem 1, we have

v(a, θ) + q(a)ua(a, θ) + q′(a)u(a, θ) = 0,

v(a, θ′) + q(a)ua(a, θ
′) + q′(a)u(a, θ′) = 0.

Adding the first equation multiplied by u(a, θ′) and the second multipliled by−u(a, θ),

we obtain

q(a) = − v(a, θ)u(a, θ′)− v(a, θ′)u(a, θ)

ua(a, θ)u(a, θ′)− ua(a, θ′)u(a, θ)
,

which is well-defined because the denominator is strictly negative by Assumption 2.

Consequently, p(θ) = V (a, θ) + q(a)u(a, θ). In sum, for each θ ∈ ΘΣ! , an arbitrary

solution p(θ) to (D) is determined by Σ", which is constructed from a fixed solution π

to (P). Moreover, since Θ is the closure of ΘΣ! , there is a unique continuous extension

of p from ΘΣ! to Θ. This shows that there is a unique p ∈ C(Θ) that solves (D). □
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B.3. Proof of Theorem 2. We first prove part (2). Suppose by contradiction that

there exist (a, θ1), (a, θ2), and (a, θ3) in Γ" with θ1 < θ2 < θ3. Then, by the definition

of Γ", we have minΓ"
a < θ"(a) < maxΓ"

a. Thus, by redefining θ1 = minΓ"
a and

θ3 = maxΓ"
a if necessary, we can assume that θ1 < θ"(a) < θ3, so (3) holds. But this

implies that the rows of the matrix S are linearly independent, which contradicts the

fact that (1) holds at (a, θ1), (a, θ2), and (a, θ3). Thus, |Γ"
a| ≤ 2 for all a ∈ A.

We now turn to part (1). For any µ ∈ ∆(Θ), denote the set of distributions of

posteriors with average posterior equal to µ by

∆2 (µ) =

3
τ ∈ ∆(∆(Θ)) :

!

∆(Θ)

ηdτ (η) = µ

4
.

Let ∆Bin
2 (µ) ⊂ ∆2(µ) denote the set of such distributions where in addition the

posterior is always supported on at most two states:

∆Bin
2 (µ) =

7
τ ∈ ∆2(µ) : supp(τ) ⊂ ∆Bin

1

8
,

where

∆Bin
1 = {η ∈ ∆(Θ) : |supp(η)| ≤ 2} .

We wish to show that for each τ ∈ ∆2(φ), there exists τ̂ ∈ ∆Bin
2 (φ) such that πτ̂ = πτ .

We set the stage by defining some key objects and establishing their properties. Define

∆1 = ∆ (Θ) and ∆2 = ∆ (∆ (Θ)). Since Θ is compact, the sets ∆1 and ∆2 are

also compact (in the weak* topology), by Prokhorov’s Theorem (Theorem 15.11 in

Aliprantis and Border 2006). Moreover, ∆2 (µ) is compact, since it is a closed subset

of the compact set ∆2.

Define the correspondence P : ∆1 ⇒ ∆1 as

P (µ) =

3
η ∈ ∆1 :

!
u (a" (µ) , θ) dη (θ) = 0

4
.

For each µ ∈ ∆1, P (µ) is a moment set—a set of probability measures η ∈ ∆1

satisfying a given moment condition (e.g., Winkler 1988). By Assumption 2, we

have, for all µ, η ∈ ∆1,

η ∈ P (µ) ⇐⇒ a" (µ) = a" (η) . (19)

Clearly, P (µ) is nonempty (as µ ∈ P (µ)) and convex. Since u is continuous in θ,

P (µ) is a closed subset of ∆1, and hence is compact. Moreover, the correspondence
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P has a closed graph. Indeed, consider two sequences µn → µ ∈ ∆1 and ηn → η ∈ ∆1

with µn ∈ ∆1 and ηn ∈ P (µn), so that
!

u (a" (µn) , θ) dηn (θ) = 0.

Note that a"(µ) is a continuous function of µ, by Berge’s theorem (Theorem 17.31

in Aliprantis and Border 2006). Since u is also continuous, by Corollary 15.7 in

Aliprantis and Border (2006) we have
!

u (a∗ (µ) , θ) dη (θ) = 0,

proving that η ∈ P (µ), so P has a closed graph.

Define the correspondence E : ∆1 ⇒ ∆1 as

E (µ) = P (µ) ∩∆Bin
1 = {η ∈ P (µ) : |supp η| ≤ 2} .

Notice that for each µ ∈ ∆1, the support of µ is well defined, by Theorem 12.14 in

Aliprantis and Border (2006). Moreover, from the proof of Theorem 15.8 in Aliprantis

and Border (2006), it follows that ∆Bin
1 is a closed subset of ∆1, so both ∆Bin

1 and

E(µ) are compact.

Define the correspondence Λ : ∆1 ⇒ ∆2 as

Λ (µ) =

3
λ ∈ ∆ (E (µ)) : µ =

!

E(µ)

ηdλ (η)

4
.

Lemma 20 shows that the correspondence Λ admits a measurable selection.

Lemma 20. There exists a measurable function µ *→ λµ ∈ Λ (µ).

Proof. The correspondence Λ is nonempty-valued, by Lemma 5. Next, fix µ ∈ ∆1,

and consider a sequence λn → λ ∈ ∆2 with λn ∈ Λ (µ). By the Portmanteau Theorem

(Theorem 15.3 in Aliprantis and Border 2006), we have
!

E(µ)

ηdλn (η) →
!

E(µ)

ηdλ (η) and lim sup
n

λn (E (µ)) ≤ λ (E (µ)) ,

where the last inequality holds because E (µ) is closed. Thus,
!

E(µ)

ηdλ (η) = µ and 1 = lim sup
n

λn (E (µ)) ≤ λ (E (µ)) ≤ 1,

proving that λ ∈ Λ (µ). Thus, Λ is closed-valued.
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Next, consider two sequences µn → µ ∈ ∆1 and λn → λ ∈ ∆2 with µn ∈ ∆1 and

λn ∈ Λ(µn), so that

µn =

!
ηdλn (η) , λn

9
∆Bin

1

:
= 1, and λn (P (µn)) = 1.

The Portmanteau Theorem implies that µ =
"
ηdλ (η) and λ

9
∆Bin

1

:
= 1, since ∆Bin

1

is closed. Define P (µn) as the closure of ∪∞
k=nP (µk). By construction, P (µk) ⊂

P (µk) ⊂ P (µn) for k ≥ n, so the Portmanteau Theorem implies that λ(P (µn)) = 1.

Moreover, P (µn) ↓ P ⊂ P (µ), because P has a closed graph. Hence, λ(P (µ)) = 1, by

the continuity of probability measures (Theorem 10.8 in Aliprantis and Border 2006).

That is, λ ∈ Λ(µ), showing that the correspondence Λ has a closed graph.

Therefore, Λ is measurable, by Theorem 18.20 in Aliprantis and Border (2006), as

well as nonempty- and closed-valued. Hence, there exists a measurable function

µ *→ λµ ∈ Λ (µ), by Theorem 18.13 in Aliprantis and Border (2006). □

Finally, taking a measurable selection, for each τ ∈ ∆2 (φ), define τ̂ ∈ ∆2 as

τ̂
1
#∆1

2
=

!

∆1

λµ

1
#∆1

2
dτ (µ) (20)

for every measurable set #∆1 ⊂ ∆1. By construction, τ̂ ∈ ∆Bin
2 (φ), since

τ̂(∆Bin
1 ) =

!

∆1

λµ(∆
Bin
1 )dτ(µ) = 1

and

φ =

!

∆1

µdτ(µ) =

!

∆1

.!

E(µ)

ηdλµ(η)

/
dτ(µ) =

!

∆1

ηdτ̂(η),
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where the first equality holds by τ ∈ ∆2(φ), the second by λµ ∈ Λ, and the third by

(20). Similarly, for each measurable #A ⊂ A and #Θ ⊂ Θ, we have

πτ ( #A, #Θ) =

!

∆1

1{a∗(µ) ∈ #A}µ(#Θ)dτ(µ)

=

!

∆1

1{a∗(µ) ∈ #A}
.!

E(µ)

η(#Θ)dλµ(η)

/
dτ(µ)

=

!

∆1

.!

E(µ)

1{a∗(η) ∈ #A}η(#Θ)dλµ(η)

/
dτ(µ)

=

!

∆1

1{a∗(η) ∈ #A}η(#Θ)dτ̂(η)

= πτ̂ ( #A, #Θ),

where the second equality holds by λµ ∈ Λ, the third by (19) and E(µ) ⊂ P (µ), and

the fourth by (20).

B.4. Proof of Corollary 1. Let a be such that
"
u(a, θ)dφ = 0. Since |Θ| ≥ 3,

Assumption 4 and
"
u(a, θ)dφ = 0 imply that there exist θ1 < θ2 < θ3 in Θ such that

θ1 < θ"(a) < θ3.

Suppose that no disclosure is optimal. Then, by part (2) of Theorem 1, it follows

that Γ"
a = Γa = Θ and (1) holds for all θ ∈ Θ, so there exist constants q(a), q′(a) ∈ R

such that

v(a, θ) = −q(a)ua(a, θ)− q′(a)u(a, θ) for all θ ∈ Θ.

That is, v(a, ·) lies in a linear space L spanned by ua(a, ·) and u(a, ·), whose dimension

is at most 2. But the space of functions v(a, ·) satisfying Assumption 1 is the linear

space C(Θ), whose dimension is at least 3, since |Θ| ≥ 3. Hence, the space L is

a proper subspace of C(Θ), so generically v(a, ·) does not belong to L, and thus

generically no disclosure is suboptimal.

B.5. Proof of Theorem 3. We give the theorem for the single-dipped case. We

start with an appropriate version of the theorem of alternative.

Lemma 21. Exactly one of the following two alternatives holds.

(1) There exists x > 0 such that xR ≤ 0.

(2) There exists y ≥ 0 such that Ry ≥ 0 and Ry ∕= 0.
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Proof. Clearly, (1) and (2) cannot both hold, because premultiplying Ry ≥ 0 with

Ry ∕= 0 by x > 0 yields xRy > 0, whereas postmultiplying xR ≤ 0 by y ≥ 0 yields

xRy ≤ 0.

Now suppose that (1) does not hold. Then there does not exist x ≥ 0 such that

x
1
R −I

2
≤

1
0 −e

2

where I is an identity matrix and e is a row vector of ones. Thus, by the theorem of

alternative (e.g., Theorem 2.10 in Gale 1989), there exists y ≥ 0 and z ≥ 0 such that

;
R

−I

<1
y z

2
≥ 0 and − ez < 0,

which in turn shows that (2) holds. □

We prove the theorem by contraposition. Suppose that Γ is not single-dipped, so

it contains a strictly single-peaked triple (a1, θ1), (a2, θ2), (a1, θ3). Without loss, we

can assume that θ1 ≤ θ"(a) ≤ θ3. This is because minΓa1 ≤ θ"(a1) ≤ maxΓa1 by

Theorem 1, and thus by Assumption 4 the triple (a1,minΓa1), (a2, θ2), (a1,maxΓa1)

is strictly single-peaked triple and lies in Γ.

By (D1) and Theorem 1, we have

V (a1, θ1) + q(a1)u(a1, θ1) ≥ V (a2, θ1) + q(a2)u(a2, θ1),

V (a2, θ2) + q(a2)u(a2, θ2) ≥ V (a1, θ2) + q(a1)u(a1, θ2),

V (a1, θ3) + q(a1)u(a1, θ3) ≥ V (a2, θ3) + q(a2)u(a2, θ3).

By (2), for an optimal πa, and for i ∈ {1, 2}, we have

q(ai) =
Eπai

[v(ai, θ)]

−Eπai
[ua(ai, θ)]

> 0,

where the inequality follows from Assumptions 2 and 4. Thus, the vector x =

(1, q(a1), q(a2)) is strictly positive and satisfies xR ≤ 0. By Lemma 21, there does

not exist a vector y ≥ 0 such that Ry ≥ 0 and Ry ∕= 0, as desired.
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B.6. Proof of Theorem 4. The set Γ is single-dipped (-peaked) by Theorem 3 with

y =

(

)*
u(a2, θ3)u(a1, θ2)− u(a2, θ2)u(a1, θ3)

u(a2, θ3)u(a1, θ1)− u(a2, θ1)u(a1, θ3)

u(a2, θ2)u(a1, θ1)− u(a2, θ1)u(a1, θ2)

+

,-

(

))*y =

(

))*

u(a2,θ1)
V (a2,θ1)−V (a1,θ1)

u(a2,θ2)
V (a2,θ2)−V (a1,θ2)

u(a2,θ3)
V (a2,θ3)−V (a1,θ3)

+

,,-

+

,,- ,

as follows from Lemma 23 and Lemma 24 (Lemma 25). Moreover, |Γ"
a| ≤ 2 for all

a by Theorem 2 and Lemma 22, showing that Γ" is strictly single-dipped (-peaked).

Finally, consider

vn(a, θ) = v(a, θ) +

! θ

0

ṽ(θ)

n
uθ(a, θ̃)dθ̃,

where ṽ(θ) is a continuous, strictly positive, and strictly increasing (decreasing) func-

tion on Θ. Then vn(a, θ) > 0 because v(a, θ) > 0 and uθ(a, θ) > 0 for all (a, θ), by

Assumptions 5 and 6. Moreover, for all a2 ≥ (≤)a1,

vnθ (a2, θ)

uθ(a1, θ)
=

vθ(a2, θ)

uθ(a1, θ)
+

ṽ(θ)

n

uθ(a2, θ)

uθ(a1, θ)

is strictly increasing (decreasing) in θ, because ṽ(θ) is strictly positive and strictly

increasing (decreasing) in θ; vθ(a2, θ)/uθ(a1, θ) is increasing (decreasing) in θ; and

uθ(a2, θ)/uθ(a1, θ) is increasing in θ, since uaθ(a, θ)/uθ(a, θ) is increasing (decreasing)

in θ. Thus, by Lemma 2, there exists an optimal single-dipped (-peaked) outcome.

Lemma 22. If uaθ(a, θ)/uθ(a, θ) and vθ(a, θ)/uθ(a, θ) are increasing (decreasing) in

θ for all a, with at least one of them strictly increasing (decreasing), then |S| > (<)0

for all a and θ1 < θ2 < θ3 such that θ1 < θ"(a) < θ3.

Proof. We consider the case where uaθ/uθ and vθ/uθ are increasing in θ; the case

where uaθ/uθ and vθ/uθ are decreasing in θ is analogous and thus omitted.

Fix θ1 < θ2 < θ3 and a such that u(a, θ1) < 0 < u(a, θ3). The inequality |S| > 0

follows from the following displayed equations:

u(a, θ3)− u(a, θ1) =

! θ3

θ1

uθ(a, θ)dθ > 0,

where the inequality holds by Assumption 6;
'''''
u(a, θ1) u(a, θ3)

ua(a, θ1) ua(a, θ3)

''''' = −u(a, θ3)ua(a, θ1) + u(a, θ1)ua(a, θ3) > 0,
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where the inequality holds by part (2) of Lemma 4;

'''''
v(a, θ1) v(a, θ3)

u(a, θ1) u(a, θ3)

''''' = u(a, θ3)v(a, θ1)− u(a, θ1)v(a, θ3) > 0,

where the inequality holds by Assumption 5;

−

'''''
v(a, θ2)− v(a, θ1) v(a, θ3)− v(a, θ2)

u(a, θ2)− u(a, θ1) u(a, θ3)− u(a, θ2)

'''''

= (v(a, θ3)− v(a, θ2))(u(a, θ2)− u(a, θ1))− (v(a, θ2)− v(a, θ1))(u(a, θ3)− u(a, θ2))

=

! θ3

θ2

! θ2

θ1

(vθ(a, θ̃)uθ(a, θ)− vθ(a, θ)uθ(a, θ̃))dθdθ̃ ≥ (>)0,

where the inequality holds by Assumption 6 and (strict) monotonicity of vθ/uθ in θ;

'''''
u(a, θ2)− u(a, θ1) u(a, θ3)− u(a, θ2)

ua(a, θ2)− ua(a, θ1) ua(a, θ3)− ua(a, θ2)

'''''

= (u(a, θ2)− u(a, θ1))(ua(a, θ3)− ua(a, θ2))− (u(a, θ3)− u(a, θ2))(ua(a, θ2)− ua(a, θ1))

=

! θ3

θ2

! θ2

θ1

(uθ(a, θ)uaθ(a, θ̃)− uθ(a, θ̃)uaθ(a, θ))dθdθ̃ ≥ (>)0,

where the inequality holds by Assumption 6 and (strict) monotonicity of uaθ/uθ in θ;

'''''''

v(a, θ1) v(a, θ2) v(a, θ3)

u(a, θ1) u(a, θ2) u(a, θ3)

ua(a, θ1) ua(a, θ2) ua(a, θ3)

'''''''
'''''
u(a, θ1) u(a, θ3)

ua(a, θ1) ua(a, θ3)

'''''

(u(a, θ3)− u(a, θ1))

= −

'''''
v(a, θ2)− v(a, θ1) v(a, θ3)− v(a, θ2)

u(a, θ2)− u(a, θ1) u(a, θ3)− u(a, θ2)

'''''

+

'''''
v(a, θ1) v(a, θ3)

u(a, θ1) u(a, θ3)

'''''
'''''
u(a, θ1) u(a, θ3)

ua(a, θ1) ua(a, θ3)

'''''

'''''
u(a, θ2)− u(a, θ1) u(a, θ3)− u(a, θ2)

ua(a, θ2)− ua(a, θ1) ua(a, θ3)− ua(a, θ2)

''''' ,

where the equality holds by rearrangement. □
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Lemma 23. If uaθ(a, θ)/uθ(a, θ) and vθ(a2, θ)/uθ(a1, θ) are increasing (decreasing) in

θ for all a and a2 ≥ (≤)a1, with at least one of them strictly increasing (decreasing),

then |R| > (<)0 for all θ1 < θ2 < θ3 and all a2 > (<)a1 such that θ1 ≤ θ"(a1) ≤ θ3.

Proof. We consider the case where uaθ/uθ and vθ/uθ are increasing in θ; the case

where uaθ/uθ and vθ/uθ are decreasing in θ is analogous and thus omitted.

Fix θ1 < θ2 < θ3 and a2 > a1 such that u(a1, θ1) < 0 < u(a1, θ2). The inequality

|R| > 0 follows from the following displayed equations:

u(a1, θ3)− u(a1, θ1) =

! θ3

θ1

uθ(a1, θ)dθ > 0,

where the inequality holds by Assumption 6;
'''''
u(a1, θ1) u(a1, θ3)

u(a2, θ1) u(a2, θ3)

'''''

= −u(a1, θ3)u(a2, θ1) + u(a1, θ1)u(a2, θ3)

= −g(a1)ũ(a1, θ3)g(a2)ũ(a2, θ1) + g(a1)ũ(a1, θ1)g(a2)ũ(a2, θ3)

= g(a1)g(a2)[−ũ(a1, θ3)(ũ(a2, θ1)− ũ(a1, θ1)) + ũ(a1, θ1)(ũ(a2, θ3)− ũ(a1, θ3))]

= g(a1)g(a2)

! a2

a1

[−ũ(a1, θ3)ũa(a, θ1) + ũ(a1, θ1)ũa(a, θ3)]da > 0,

where the inequality and the second equality hold by parts (2) and (3) of Lemma 4;
'''''
V (a2, θ1)− V (a1, θ1) V (a2, θ3)− V (a1, θ3)

u(a1, θ1) u(a1, θ3)

'''''

= u(a1, θ3)

! a2

a1

v(a, θ1)da− u(a1, θ1)

! a2

a1

v(a, θ3)da > 0,

where the inequality holds by Assumption 5;

−

'''''
V (a2, θ2)− V (a1, θ2)− V (a2, θ1) + V (a1, θ1) V (a2, θ3)− V (a1, θ3)− V (a2, θ2) + V (a1, θ2)

u(a1, θ2)− u(a1, θ1) u(a1, θ3)− u(a1, θ2)

'''''

= (V (a2, θ3)− V (a1, θ3)− V (a2, θ2) + V (a1, θ2))(u(a1, θ2)− u(a1, θ1))

−(V (a2, θ2)− V (a1, θ2)− V (a2, θ1) + V (a1, θ1))(u(a1, θ3)− u(a1, θ2))

=

! a2

a1

! θ3

θ2

! θ2

θ1

(vθ(a, θ̃)uθ(a1, θ)− vθ(a, θ)uθ(a1, θ̃))dθdθ̃da ≥ (>)0,
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where the inequality holds by Assumption 6 and (strict) monotonicity of vθ/uθ in θ;

'''''
u(a1, θ2)− u(a1, θ1) u(a1, θ3)− u(a1, θ2)

u(a2, θ2)− u(a2, θ1) u(a2, θ3)− u(a2, θ2)

'''''

= (u(a1, θ2)− u(a1, θ1))(u(a2, θ3)− u(a2, θ2))− (u(a1, θ3)− u(a1, θ2))(u(a2, θ2)− u(a2, θ1))

=

! θ3

θ2

! θ2

θ1

(uθ(a1, θ)uθ(a2, θ̃)− uθ(a1, θ̃)uθ(a2, θ))dθdθ̃ ≥ (>)0,

where the inequality holds by Assumption 6 and (strict) monotonicity of uaθ/uθ in θ,

which imply that, for a2 > a1 and θ̃ > θ, we have

ln
uθ(a1, θ)uθ(a2, θ̃)

uθ(a1, θ̃)uθ(a2, θ)
=

! a2

a1

∂

∂a
[ln uθ(a, θ̃)− ln uθ(a, θ)]da =

! a2

a1

=
uaθ(a, θ̃)

uθ(a, θ̃)
− uaθ(a, θ)

uθ(a, θ)

>
da ≥ (>)0;

'''''''

V (a2, θ1)− V (a1, θ1) −(V (a2, θ2)− V (a1, θ2)) V (a2, θ3)− V (a1, θ3)

−u(a1, θ1) u(a1, θ2) −u(a1, θ3)

u(a2, θ1) −u(a2, θ2) u(a2, θ3)

'''''''
'''''
u(a1, θ1) u(a1, θ3)

u(a2, θ1) u(a2, θ3)

'''''

(u(a1, θ3)− u(a1, θ1))

= −

'''''
V (a2, θ2)− V (a1, θ2)− V (a2, θ1) + V (a1, θ1) V (a2, θ3)− V (a1, θ3)− V (a2, θ2) + V (a1, θ2)

u(a1, θ2)− u(a1, θ1) u(a1, θ3)− u(a1, θ2)

'''''

+

'''''
V (a2, θ1)− V (a1, θ1) V (a2, θ3)− V (a1, θ3)

u(a1, θ1) u(a1, θ3)

'''''
'''''
u(a1, θ1) u(a1, θ3)

u(a2, θ1) u(a2, θ3)

'''''

'''''
u(a1, θ2)− u(a1, θ1) u(a1, θ3)− u(a1, θ2)

u(a2, θ2)− u(a2, θ1) u(a2, θ3)− u(a2, θ2)

''''' ,

where the equality holds by rearrangement. □

Lemma 24. If uaθ(a, θ)/uθ(a, θ) is increasing in θ for all a, then for all θ1 < θ2 < θ3

and all a2 > a1 such that θ1 ≤ θ"(a1) ≤ θ3, we have

u(a2, θ3)u(a1, θ1) > u(a2, θ1)u(a1, θ3),

u(a2, θ2)u(a1, θ1) > u(a2, θ1)u(a1, θ2),

u(a2, θ3)u(a1, θ2) > u(a2, θ2)u(a1, θ3).
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Proof. Fix θ1 < θ2 < θ3 and a2 > a1 such that u(a1, θ1) < 0 < u(a1, θ3). The

first claimed inequality follows as in the proof of Lemma 23, by Assumption 2 and

u(a1, θ1) < 0 < u(a1, θ3). We thus focus on the second and third inequalities.

As in the proof of Lemma 23, Assumption 6 and monotonicity of uaθ/uθ in θ yield

u(a1, θ3) > u(a1, θ2) > u(a1, θ1),

u(a2, θ3)− u(a2, θ2)

u(a1, θ3)− u(a1, θ2)
≥ u(a2, θ2)− u(a2, θ1)

u(a1, θ2)− u(a1, θ1)
.

There are three cases to consider.

(1) u(a1, θ2) = 0. In this case, u(a2, θ2) < 0, by Assumption 2. Thus,

u(a2, θ2)u(a1, θ1) > 0 = u(a2, θ1)u(a1, θ2),

u(a2, θ3)u(a1, θ2) = 0 > u(a2, θ2)u(a1, θ3).

(2) u(a1, θ2) > 0. In this case, as follows from the proof of Lemma 23,

u(a2, θ2)u(a1, θ1) > u(a2, θ1)u(a1, θ2),

by Assumption 2 and u(a1, θ1) < 0 < u(a1, θ2). Thus,

u(a2, θ3)− u(a2, θ2)

u(a1, θ3)− u(a1, θ2)
≥ u(a2, θ2)− u(a2, θ1)

u(a1, θ2)− u(a1, θ1)
>

u(a2, θ2)

u(a1, θ2)

=⇒ u(a2, θ3)u(a1, θ2) > u(a2, θ2)u(a1, θ3).

(3) u(a1, θ2) < 0. In this case, as follows from the proof of Lemma 23,

u(a2, θ3)u(a1, θ2) > u(a2, θ2)u(a1, θ3),

by Assumption 2 and u(a1, θ2) < 0 < u(a1, θ3). Thus,

u(a2, θ2)

u(a1, θ2)
>

u(a2, θ3)− u(a2, θ2)

u(a1, θ3)− u(a1, θ2)
≥ u(a2, θ2)− u(a2, θ1)

u(a1, θ2)− u(a1, θ1)

=⇒ u(a2, θ2)u(a1, θ1) > u(a2, θ1)u(a1, θ2).

□

Lemma 25. If vθ(a2, θ)/uθ(a1, θ) is decreasing in θ for all a2 ≤ a1, then for all

θ1 < θ2 < θ3 and all a2 < a1 such that θ1 ≤ θ"(a1) ≤ θ3, we have

u(a1, θ1)

V (a1, θ1)− V (a2, θ1)
<

u(a1, θ2)

V (a1, θ2)− V (a2, θ2)
<

u(a1, θ3)

V (a1, θ3)− V (a2, θ3)
.
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Proof. Fix θ1 < θ2 < θ3 and a2 < a1 such that θ1 ≤ θ"(a1) ≤ θ3. As in the proof of

Lemma 23, Assumptions 5, 6, and monotonicity of vθ/uθ in θ yield

V (a1, θj)− V (a2, θj) > 0 for j = 1, 2, 3, (21)

u(a1, θ3) > u(a1, θ2) > u(a1, θ1), (22)

V (a1, θ3)− V (a2, θ3)− V (a1, θ2) + V (a2, θ2)

u(a1, θ3)− u(a1, θ2)

≤ V (a1, θ2)− V (a2, θ2)− V (a1, θ1) + V (a2, θ1)

u(a1, θ2)− u(a1, θ1)
.

(23)

There are two cases to consider.

(1) u(a1, θ2) ≥ 0. In this case, we have

u(a1, θ1)

V (a1, θ1)− V (a2, θ1)
<

u(a1, θ2)

V (a1, θ2)− V (a2, θ2)
,

by (21) and u(a1, θ1) < 0 ≤ u(a1, θ2), and

u(a1, θ2)

V (a1, θ2)− V (a2, θ2)
<

u(a1, θ3)

V (a1, θ3)− V (a2, θ3)
,

by

u(a1, θ2)(V (a1, θ3)− V (a2, θ3)) ≤u(a1, θ2)
u(a1, θ3)− u(a1, θ1)

u(a1, θ2)− u(a1, θ1)
(V (a1, θ2)− V (a2, θ2))

<u(a1, θ3)(V (a1, θ2)− V (a2, θ2)),

where the first inequality holds by (23), V (a1, θ1) > V (a2, θ1), u(a1, θ3) > u(a1, θ2),

and u(a1, θ2) ≥ 0, and the second inequality holds by V (a1, θ2) > V (a2, θ2), u(a1, θ3) >

u(a1, θ2), and u(a1, θ1) < 0.

(2) u(a1, θ2) ≤ 0. In this case, we have

u(a1, θ2)

V (a1, θ2)− V (a2, θ2)
<

u(a1, θ3)

V (a1, θ3)− V (a2, θ3)
,

by (21) and u(a1, θ2) ≤ 0 < u(a1, θ3), and

u(a1, θ1)

V (a1, θ1)− V (a2, θ1)
<

u(a1, θ2)

V (a1, θ2)− V (a2, θ2)
,

by

(−u(a1, θ2))(V (a1, θ1)− V (a2, θ1)) ≤(−u(a1, θ2))
u(a1, θ3)− u(a1, θ1)

u(a1, θ3)− u(a1, θ2)
(V (a1, θ2)− V (a2, θ2))

<(−u(a1, θ1))(V (a1, θ2)− V (a2, θ2)),
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where the first inequality holds by (23), V (a1, θ3) > V (a2, θ3), u(a1, θ3) > u(a1, θ2),

and u(a1, θ2) ≤ 0, and the second inequality holds by V (a1, θ2) > V (a2, θ2), u(a1, θ2) >

u(a1, θ1), and u(a1, θ3) > 0. □

B.7. Proof of Theorem 6. By Θ = [0, 1] and Assumptions 1–4, θ"(a) is a strictly

increasing, continuous function from A onto Θ = Θ. Since the range of θ" is Θ and

full disclosure is optimal, Theorem 1 implies that θ"(a) ∈ Γ"
a for all a. Thus, since

the contact set is pairwise (i.e., |Γ"
a| ≤ 2) and minΓ"

a < θ"(a) < maxΓ"
a whenever

Γ"
a is multivalued (by the definition of Γ"), it follows that Γ"

a = {θ"(a)} for all a, as

otherwise minΓ"
a, θ

"(a), and maxΓ"
a would be three distinct elements in Γ"

a. Hence,

Γ" = ∪θ∈Θ(a
"(δθ), θ), so full disclosure is optimal.

B.8. Proof of Theorem 7. We give the proof for the single-dipped case. Since for

all θ1 < θ2 there exists p ∈ (0, 1) such that (6) holds, it follows that there do not exist

θ1 < θ2 such that (a"(δθ1), θ1) and (a"(δθ2), θ2) are in Γ. Suppose by contradiction

that such θ1 and θ2 exist. For any µ = ρδθ1 + (1− ρ)δθ2 with ρ ∈ (0, 1), we have

p(θ1) = V (a"(θ1), θ1) ≥ V (a"(µ), θ1) + q(a"(µ))u(a"(µ), θ1),

p(θ2) = V (a"(θ2), θ2) ≥ V (a"(µ), θ2) + q(a"(µ))u(a"(µ), θ2),

by (D1) and the definition of Γ. Adding the first inequality multiplied by ρ and the

second inequality multiplied by 1−ρ, we obtain that (6) fails for all ρ ∈ (0, 1), yielding

a contradiction.

Since Θ = [0, 1], Γ∗ is strictly single-dipped, and for all θ1 < θ2 there exists p ∈ (0, 1)

such that (6) holds, it follows that t1(a2) ≤ t1(a1) for all a1 < a2 in AΓ, and thus Γ" is

single-dipped negative assortative. (Recall that, by Theorem 5, Γ"(a) = {t1(a), t2(a)}
for all a ∈ AΓ where t2(a) is increasing in a.) Suppose by contradiction that there

exist a1 < a2 in AΓ such that t1(a2) > t1(a1). Then t1(a2) ≥ t2(a1), as otherwise

(a1, t1(a1)), (a2, t1(a2)), (a1, t2(a1)) is a strictly single-peaked triple in Γ". Define

ai = inf{a ∈ AΓ : t1(ai) ≤ t1(a) ≤ t2(a) ≤ t2(ai)} ≤ ai, for i = 1, 2.

Since AΓ! = AΓ and AΓ is compact, we have a1, a2 ∈ AΓ! . We claim that Γ"
ai

=

{θ"(ai)} for i = 1, 2. Suppose by contradiction that Γ"
ai

∕= {θ"(ai)}, so Γ"
ai

=

{t1(ai), t2(ai)} with t1(ai) < θ"(ai) < t2(ai). Let ΘΓ! be the projection of Γ" on

Θ. Since π(Γ") = 1 for an optimal π, we have φ(ΘΓ!) = 1 by (P1), and the closure
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of ΘΓ! is Θ = [0, 1]. Thus, there exists (a, θ) ∈ Γ" with t1(ai) < θ < t2(ai). Since Γ"

is strictly single-dipped, it follows that a < a (otherwise (a, t1(a)), (a, θ), (a, t2(a))

is a single-peaked triple in Γ") and t1(ai) ≤ t1(a) ≤ t2(a) ≤ t2(ai) (otherwise either

(a, t1(a)), (ai, t1(ai), (a, θ) or (a, θ), (ai, t2(ai), (a, t2(a)) is a strictly single-peaked

triple in Γ"), contradicting the definition of a. Hence, (a1, θ
"(a1)) and (a2, θ

"(a2)) are

in Γ, so by the second step of the proof we must have a1 = a2. But, by construction,

t1(a1) ≤ θ"(a1) ≤ t2(a1) ≤ t1(a2) ≤ θ"(a2) ≤ t2(a2), and a1 = a2 implies that these

inequalities all hold with equality, contradicting t1(a2) > t1(a1).

Now suppose that φ has a density f and Γ" is single-dipped negative assortative.

Finally, we show that the functions t1 and t2 are continuous and satisfy the differential

equations (7)–(8) and the boundary condition (9). Since the closure of the projection

ΘΓ! of Γ" on Θ is Θ, it follows that the the closure of the image of the functions t1

and t2 must also be equal to Θ. Since t1 is decreasing and t2 is increasing on the

compact domain AΓ, and since t1(a) ≤ θ"(a) ≤ t2(a) for all a ∈ AΓ, it follows that t1

and t2 are continuous functions such that t1(a) = θ"(a) = t2(a), t1(a) < θ"(a) < t2(a)

for all a > a, t1(a) = 0, t2(a) = 1, and (t1(bi), t2(bi)) = (t1(bi), t2(bi)) for all i, where

{(bi, bi)}i is an at most countable set of disjoint open intervals comprising the set

[a, a] \ AΓ. Since φ has a density, the measure of the endpoints of these intervals is

zero, and hence the set of optimal outcomes is unaffected if we redefine AΓ as [a, a]

and extend the domain of t1 and t2 to [a, a] by setting t1(a) = t1(bi) = t1(bi) and

t2(a) = t2(bi) = t2(bi) for all a ∈ (bi, bi). In sum, without loss of generality, we can

assume that t1 and t2 are continuous monotone functions defined on [a, a] that satisfy

(9) and t1(a) < θ"(a) < t2(a) for all a ∈ (a, a].

Since φ has a density and Γ"
a = {t1(a), t2(a)} for all a ∈ [a, a], where t1 is continuously

decreasing and t2 is continuously increasing, we can rewrite (P2) for Ã = [a, a′], with

a ≤ a < a′ ≤ a, as
! a′

a

u(ã, t1(ã))(−dφ([0, t1(ã)])) +

! a′

a

u(ã, t2(ã))dφ([0, t2(ã)]) = 0.

Taking the limit a′ ↓ a, we obtain (7) for all a ∈ [a, a].

Since Γ"
a = {t1(a), t2(a)} for all a ∈ [a, a], Theorem 1 gives the FOC, for all a ∈ (a, a],

v(a, t1(a)) + q(a)ua(a, t1(a)) + q′(a)u(a, t1(a)) = 0,

v(a, t2(a)) + q(a)ua(a, t2(a)) + q′(a)u(a, t2(a)) = 0.
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Solving for q(a) and q′(a), we get, for all a ∈ (a, a],

q(a) =
v(a, t1(a))u(a, t2(a))− v(a, t2(a))u(a, t1(a))

u(a, t1(a))ua(a, t2(a))− u(a, t2(a))ua(a, t1(a))
,

q′(a) =
v(a, t1(a))ua(a, t2(a))− v(a, t2(a))ua(a, t1(a))

ua(a, t1(a))u(a, t2(a))− ua(a, t2(a))u(a, t1(a))
,

where the denominators in the expressions for q(a) and q′(a) are not equal to 0, by

Assumption 2. Recalling that q′ is the derivative of q, we obtain (8) for all a ∈ (a, a].

B.9. Proof of Corollary 3. We give the proof for the single-dipped case. Noting

that ρu(a"(µ), θ1) + (1− ρ)u(a"(µ), θ2) = 0 and denoting a = a"(µ), we infer that (6)

fails if there exist θ1 < θ2 such that for all a ∈ (a"(δθ1), a
"(δθ2)), we have

u(a, θ2)(V (a, θ1)− V (a"(δθ1), θ1))− u(a, θ1)(V (a, θ2)− V (a"(δθ2), θ2)) ≤ 0.

By Taylor’s theorem and some algebra, we get

u(a, θ2)(V (a, θ1)− V (a"(δθ1), θ1))− u(a, θ1)(V (a, θ2)− V (a"(δθ2), θ2))

=
1

2
ua(a, θ

"(a))

.
va(a, θ

"(a))− v(a, θ"(a))uaa(a, θ
"(a))

ua(a, θ"(a))

−2
vθ(a, θ

"(a))ua(a, θ
"(a))− v(a, θ"(a))uaθ(a, θ

"(a))

uθ(a, θ"(a))

/

·(a− a"(δθ1))(a
"(δθ2)− a)(a"(δθ2)− a"(δθ1))

+o((a− a"(δθ1))(a
"(δθ2)− a)(a"(δθ2)− a"(δθ1))).

Hence, if (10) fails at some a, then there exist θ2 > θ1 with a"(δθ2) − a > 0 and

a− a"(δθ1) > 0 small enough such that (6) fails for all ρ ∈ (0, 1).

Note that dθ"(a)/da = −ua(a, θ
"(a))/uθ(a, θ

"(a)), by the implicit function theorem

applied to u(a, θ"(a)) = 0. Thus, denoting the partial derivatives of v and ua in a by

va and uaa, we get that the derivative of q(a) = −v(a, θ"(a))/ua(a, θ
"(a)) is given by

q′(a) = − va(a, θ
"(a))

ua(a, θ"(a))
+
vθ(a, θ

"(a))

uθ(a, θ"(a))
+
v(a, θ"(a))uaa(a, θ

"(a))

(ua(a, θ"(a)))2
− v(a, θ"(a))uaθ(a, θ

"(a))

ua(a, θ"(a))uθ(a, θ"(a))
.



PERSUASION AS MATCHING 73

Conversely, suppose that (10), together with all other assumptions of the corollary,

holds. Then, for a > a"(δθ), we have

V (a, θ)− v(a, θ"(a))

ua(a, θ"(a))
u(a, θ)− V (a"(δθ), θ)

=(V (ã, θ) + q(ã)(θ − ã))|aa!(δθ)

=

! a

a!(δθ)

[v(ã, θ) + q(ã)ua(ã, θ) + q′(ã)u(ã, θ)]dã

≥
! a

a!(δθ)

5
v(ã, θ)− v(ã, θ"(ã))

ua(ã, θ"(ã))
ua(ã, θ)

6
dã

+

! a

a!(δθ)

5
v(ã, θ"(ã))uaθ(ã, θ

"(ã))

uθ(ã, θ"(ã))
− vθ(ã, θ

"(ã))

uθ(ã, θ"(ã))

6
u(ã, θ)dã

=

! a

a!(δθ)

! θ!(ã)

θ

5
v(ã, θ"(ã))

ua(ã, θ"(ã))
uaθ(ã, θ̃)− vθ(ã, θ̃)

6
dθ̃dã

+

! a

a!(δθ)

! θ!(ã)

θ

5
vθ(ã, θ

"(ã))

uθ(ã, θ"(ã))
− v(ã, θ"(ã))uaθ(ã, θ

"(ã))

uθ(ã, θ"(ã))

6
uθ(ã, θ̃)dθ̃dã

=

! a

a!(δθ)

! θ!(ã)

θ

=
vθ(ã, θ

"(ã))

uθ(ã, θ"(ã))
− vθ(ã, θ̃)

uθ(ã, θ̃)

>
uθ(ã, θ̃)dθ̃dã

+

! a

a!(δθ)

! θ!(ã)

θ

v(ã, θ"(ã))

−ua(ã, θ"(ã))

=
uaθ(ã, θ

"(ã))

uθ(ã, θ"(ã))
− uaθ(ã, θ̃)

uθ(ã, θ̃)

>
uθ(ã, θ̃)dθ̃dã > 0,

where the first and last equalities are by rearrangement, the second and third equal-

ities are by the fundamental theorem of calculus, the first inequality is by (10) and

substitution of q(ã) and q′(ã), and the last inequality is by our assumptions imposed

in the corollary.

By Taylor’s theorem, we have, for θ1 < θ2 and a ∈ (a"(δθ1), a
"(δθ2)),

u(a, θ2)(V (a, θ1)− V (a"(δθ1), θ1))− u(a, θ1)(V (a, θ2)− V (a"(δθ2), θ2))

=

5
V (a"(θ2), θ1)−

v(a"(θ2), θ2)

ua(a"(θ2), θ2)
u(a"(θ2), θ1)− V (a"(δθ1), θ1)

6

·(−ua(a
"(δθ2), θ2))(a

"(δθ2)− a) + o(a"(δθ2)− a).

Hence (6) holds for sufficiently small ρ > 0.
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C. Online Appendix

C.1. Additional Examples.

Example 5 (The FOC (1) might not hold on all of Γ.). Consider the simple receiver

case. Let φ be uniform on Θ = {0, 1/3, 1}, and V (a, θ) = −a2 if θ = 0 and V (a, θ) =

−a/3 + a2 − 3a3/4 if θ ∈ {1/3, 1}. Since V (a, θ) ≤ 0 for all (a, θ) with equality on

Γ = {0, 0}∪ ({0, 2/3}× {1/3, 1}) and strict inequality elsewhere, the unique optimal

outcome reveals state 0 (which induces action 0) and pools states 1/3 and 1 (which

induces action 2/3). The contact set is Γ, so Γ0 = Θ. But (1) cannot hold on Γ,

because the following system of equations does not have a solution (q(0), q′(0)),

$
000%

000&

0− q(0) + q′(0)0 = 0,

−1
3
− q(0) + q′(0)1

3
= 0,

−1
3
− q(0) + q′(0)1 = 0.

Intuitively, θ"(a) ∈ (minΓa,maxΓa) is an interior case, so the FOC is valid on

Γ"
a = Γa; while θ"(a) ∈ {minΓa,maxΓa} is a boundary case, so the FOC may

be invalid on Γa, but it is still valid on Γ"
a = {θ"(a)} given our selection q(a) =

v(a, θ"(a))/(−ua(a, θ
"(a)).

Example 6 (Without Assumption 4, Γ might not be compact and the FOC might

fail.). Let φ be uniform on Θ = {0, 1/3, 2/3, 1}; u(a, 0) = −a, u(a, 1/3) = u(a, 2/3) =

1/2− a, and u(a, 1) = 1− a; and V (a, 0) = V (a, 1/3) = 0, V (a, 2/3) = a− 1/2, and

V (a, 1) = a−1. Note that p = 0 solves (D). Moreover, Q(a) = 0 if a < 1/2, Q(a) = 1

if a > 1/2, and Q(1/2) = [0, 1].

For any selection q̃ from Q, the associated contact set Γ̃ satisfies Γ̃a = {0, 1/3} if

a < 1/2, Γ̃a = {2/3, 1} if a > 1/2, and Γ̃1/2 = {1/3, 2/3} ∪ ({q̃(1/2)} ∩ Θ). The set

Γ̃ is not compact because (1/2, 0) /∈ Γ̃ if q̃(1/2) ∕= 0 and (1/2, 1) /∈ Γ̃ if q̃(1/2) ∕= 1.

Moreover, there does not exist a full measure set where the FOC holds: since the

full-disclosure outcome π = (δ(0,0) + δ(1/2,1/3) + δ(1/2,2/3) + δ(1,1))/4 is supported on Γ̃,

it is optimal, but the FOC does not hold at (1/2, 1/3) if q̃(a) ∕= 0 and at (1/2, 2/3) if

q̃(a) ∕= 1.
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Example 7 (The Hausdorff limit of single-dipped sets might not be single-dipped.).

Consider the simple receiver case. Let Θ = {0, 1/2, 1} and Γn be given by

Γn
a =

$
000%

000&

{0, 1
2
}, a ∈

?
1
4
, 1
2
− 1

4n

@
,

{1
2
, 1}, a ∈

?
1
2
+ 1

4n
, 3
4

@
,

∅, otherwise.

Clearly, Γn is single-dipped for each n, but the limit set Γ given by

Γa =

$
000%

000&

{0, 1
2
}, a ∈ [0, 1

2
),

{0, 1
2
, 1}, a = 1

2
,

{1
2
, 1}, a ∈ (1

2
, 1],

is not single-dipped, as it contains the strictly single-peaked triple (1/2, 0), (3/4, 1/2),

and (1/2, 1). Note that for any convergent sequence of optimal outcomes πn → π with

supp(πn) = Γn, we have supp(π) = Γ. Nevertheless, since each πn is supported on Γn

and satisfies (P2), it follows that π({1/2}× {0, 1}) = 0, and hence π is concentrated

on the single-dipped set Γ† = Γ \ ({1/2}× {0, 1}).

Example 8 (Without Θ = Θ, Γ" might not be negative assortative.). Consider

the simple case with V (a, θ) = sin(3πa). Let φ be uniform on Θ = {0, 1/2, 1}. Then
Γ" = {(1/6, 0), (1/6, 1/2), (5/6, 1/2), (5/6, 1)}, so the unique optimal outcome induces

action 1/6 at state 0, action 5/6 at state 1, and randomizes between actions 1/6 and

5/6 with equal probabilities at state 1/2. Clearly, Γ" is both strictly single-dipped

and strictly single-peaked, and (6) holds (e.g., at ρ = 2/3 for (θ1, θ2) = (0, 1/2), at

ρ = 1/3 for (θ1, θ2) = (1/2, 1), and at ρ = 5/6 for (θ1, θ2) = (0, 1)), but Γ" is not

negative assortative.

C.2. Proof of Lemma 1, Points 1 and 3.

Point 1. The set of feasible solutions to (P) is clearly nonempty, as π(a, θ) =

φ(θ)δa∗(φ)(a) (i.e., no disclosure) is feasible. Since the set A × Θ is compact, the set

of probability measures ∆(A×Θ) is also compact (in the weak* topology), by Prok-

horov’s theorem. The constraint map in (P1) is continuous because it is a projection,

and the constraint map in (P2) is continuous because u(a, θ) is continuous in (a, θ);

so the set of feasible solutions is a closed subset of the compact set ∆(A×Θ), and is
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thus itself compact. Since V (a, θ) is continuous, the objective function is continuous,

and thus attains its maximum on the compact set of feasible solutions.

Point 3. Consider a tightened dual problem in which (p, q) ∈ C(Θ)×C(A), and let

FD be the set of feasible solutions of the original dual problem: (p, q) ∈ C(Θ)×B(A)

satisfying (D1). Let FP be the set of feasible solutions of the primal problem: π ∈
∆(A×Θ) satisfying (P1) and (P2). Weak duality follows easily:

inf
(p,q)∈FD, q∈C(A)

!

Θ

p(θ)dφ(θ) ≥ inf
(p,q)∈FD

!

Θ

p(θ)dφ(θ)

= inf
(p,q)∈FD, π∈FP

!

A×Θ

p(θ)dπ(a, θ)

≥ sup
(p,q)∈FD, π∈FP

!

A×Θ

(V (a, θ) + q(a)u(a, θ))dπ(a, θ)

= sup
π∈FP

!

A×Θ

V (a, θ)dπ(a, θ),

(24)

where the first inequality holds because the original dual problem is more relaxed than

the tightened dual problem, the first equality holds by (P1), the second inequality

holds by (D1), and the second equality holds by (P2).

By the Riesz representation theorem, the space Mr(A × Θ) of regular, signed Borel

measures on the compact set A× Θ with the total variation norm is the topological

dual of the space C(A × Θ) of continuous functions on A × Θ with the supremum

norm. Moreover, the set of (positive) measures in Mr(A×Θ), Mr(Θ), and Mr(A) are

all weak* closed, so the positive cones in the primal variable space and the primal

constraint space are closed.

The tightened dual problem has a finite value, since it is bounded below by the value

of the primal problem and is bounded above by V := maxa,θ V (a, θ), as (p, q) = (V , 0)

is feasible. Moreover, since u, V ∈ C(A × Θ), there is an interior feasible solution

(p, q) = (1+ V , 0) of the tightened dual problem, as the function p(θ)− q(a)u(a, θ)−
V (a, θ) = 1+V −V (a, θ) lies in the interior of the positive cone of C(A×Ω). Together

with the closedness properties established in the previous paragraph, this implies that

the (generalized) Slater condition is satisfied for the tightened dual problem, so there

is no duality gap by Corollary 3.14 in Anderson and Nash (1987): that is,

inf
(p,q)∈FD, q∈C(A)

!

Θ

p(θ)dφ(θ) = sup
π∈FP

!

A×Θ

V (a, θ)dπ(a, θ),
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It follows that all inequalities in (24) hold with equality. Finally, as the original dual

and primal problems admit solutions, we have

min
(p,q)∈FD

!

Θ

p(θ)dφ(θ) = max
π∈FP

!

A×Θ

V (a, θ)dπ(a, θ).

C.3. Proof of Lemma 2. We give the theorem for the single-dipped case. Let πn be

any optimal outcome, so that supp(πn) ⊂ Γn. Since the set of compact subsets of a

compact set is compact (in the Hausdorff topology), taking a subsequence if necessary,

Γn converges to some compact set Γ ⊂ A×Θ. Since the set of implementable outcomes

is compact (in the weak* topology), taking a subsequence if necessary, πn converges

weakly to some implementable outcome π. Finally, since Γn → Γ, πn → π, and

supp(πn) ⊂ Γn, it follows that supp(π) ⊂ Γ, by Box 1.13 in Santambrogio (2015).

We claim that π is optimal under v. Since vn converges uniformly to v, for each δ > 0

there exists nδ ∈ N such that, for all n ≥ nδ, we have |vn(a, θ) − v(a, θ)| ≤ δ for all

(a, θ). Since πn is optimal under vn, for each implementable outcome π̃ we have
!

A×Θ

! a

0

v(ã, θ)dπn(a, θ) ≥
!

A×Θ

! a

0

vn(ã, θ)dπn(a, θ)− δ

≥
!

A×Θ

! a

0

vn(ã, θ)dπ̃(a, θ)− δ

≥
!

A×Θ

! a

0

v(ã, θ)dπ(a, θ)− 2δ.

Passing to the limit as δ → 0 and n → ∞ establishes the optimality of π under v.

Let Φ be a subset of A such that a ∈ Φ iff there exists a strictly single-peaked triple

(a1, θ1), (a2, θ2), (a1, θ3) in Γ with a = a1. Define

Γ† = Γ \ ∪a∈Φ ({a}×Θ \ {θ"(a)}) .

We show that Γ† is a Borel single-dipped set satisfying π(Γ†) = 1, and hence π is

single-dipped.

First, we show that Γ† is single-dipped. For each strictly single-peaked triple (a1, θ1),

(a2, θ2), (a1, θ3) in Γ, we have a1 ∈ Φ, and thus (a1, θ) ∈ Γ† only if θ = θ"(a1). But

then (a1, θ1) and (a1, θ3) cannot both be in Γ†, as θ1 ∕= θ3.

Second, we show that for each strictly single-peaked triple (a1, θ1), (a2, θ2), (a1, θ3)

in Γ, we have θ"(a1) = θ2. Fix such a triple. Since Γn → Γ and θ"(a) is uniformly
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continuous on A, for each δ > 0 there exist n ∈ N and a triple (an1 , θ
n
1 ), (a

n
2 , θ

n
2 ), (a

n
3 , θ

n
3 )

in Γn such that θn1 < θn2 < θn3 , a
n
1 < an2 , a

n
3 < an2 , |θni −θi| ≤ δ, and |θ"(ani )−θ"(ai)| ≤ δ

for all i ∈ {1, 2, 3} (where a3 = a1). Hence,

θ"(a1)− δ ≤ θ"(an1 ) ≤ θn2 ≤ θ2 + δ =⇒ θ"(a1) ≤ θ2 + 2δ.

To understand the middle inequality, suppose by contradiction that θ"(an1 ) > θn2 .

Recall that, by Theorem 1, each contact set Γn satisfies minΓn
an1

≤ θ"(an1 ) ≤ maxΓn
an1
.

Hence, there exists θ̂n1 ∈ Γn
an1

with θ̂n1 ≥ θ"(an1 ) > θn2 (for example, θ̂n1 = maxΓn
an1
).

But then Γn cannot be single-dipped, as it contains the strictly single-peaked triple

(an1 , θ
n
1 ), (a

n
2 , θ

n
2 ), (a

n
1 , θ̂

n
1 ). By an analogous argument, we get

θ2 − δ ≤ θn2 ≤ θ"(an3 ) ≤ θ"(a1) + δ =⇒ θ"(a1) ≥ θ2 − 2δ.

Since δ > 0 is arbitrary, we get θ"(a1) = θ2.

Third, we show that for any two strictly single-peaked triples (a1, θ1), (a2, θ2), (a1, θ3)

and (ã1, θ̃1), (ã2, θ̃2), (ã1, θ̃3) in Γ, we have θ̃2 /∈ (θ2, θ3). Suppose by contradiction that

θ̃2 ∈ (θ2, θ3). By the previous paragraph, θ"(a1) = θ2 and θ"(ã1) = θ̃2. Moreover, for

each δ > 0, there exist n ∈ N and two triples (an1 , θ
n
1 ), (a

n
2 , θ

n
2 ), (a

n
3 , θ

n
3 ) and (ãn1 , θ̃

n
1 ),

(ãn2 , θ̃
n
2 ), (ã

n
3 , θ̃

n
3 ) in Γn such that |θni − θi| ≤ δ, |θ"(ani ) − θ"(ai)| ≤ δ, |θ̃ni − θ̃i| ≤ δ,

and |θ"(ãni ) − θ"(ãi)| ≤ δ for all i ∈ {1, 2, 3} (where a3 = a1 and ã3 = ã1). Next,

since minΓn
an3

≤ θ"(an3 ) ≤ maxΓn
an3
, there exists θ̂n3 ∈ Γn

an3
such that θ̂n3 ≤ θ"(an3 ) (for

example, θ̂n3 = minΓn
an3
). Since Γn is single-dipped, to reach a contradiction it suffices

to show that the triple (an3 , θ̂
n
3 ), (ã

n
2 , θ̃

n
2 ), (a

n
3 , θ

n
3 ) (which is in Γn by construction) is

strictly single-peaked for small enough δ > 0. To see this, notice that we have

θ"(an3 ) ≤ θ"(a1) + δ = θ2 + δ,

θ"(ãn2 ) ≥ θ"(ã2)− δ > θ"(ã1)− δ = θ̃2 − δ,

θ̂n3 ≤ θ"(an3 ) ≤ θ"(a1) + δ = θ2 + δ,

θ̃n2 ∈ [θ̃2 − δ, θ̃2 + δ],

θn3 ≥ θ3 − δ.

Thus, if δ ∈ (0,min{(θ̃2 − θ2)/2, (θ3 − θ̃2)/2}), then an3 < ãn2 and θ̂n3 < θ̃n2 < θn3 , so the

triple (an3 , θ̂
n
3 ), (ã

n
2 , θ̃

n
2 ), (a

n
3 , θ

n
3 ) is strictly single-peaked.

Fourth, we show that the set Φ is countable, and thus Γ† is Borel. If a1 ∈ Φ,

then there exists a strictly single-peaked triple (a1, θ1), (a2, θ2), (a1, θ3) in Γ with
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θ"(a1) = θ2. Let us associate with each such a1 some rational number r(a1) ∈ (θ2, θ3).

Since for any other strictly single-peaked triple (ã1, θ̃1), (ã2, θ̃2), (ã1, θ̃3) in Γ, we

have θ̃2 /∈ (θ2, θ3) and, by symmetry, θ2 /∈ (θ̃2, θ̃3), we see that (θ2, θ3) ∩ (θ̃2, θ̃3) = ∅ if

θ2 ∕= θ̃2. Consequently, r(a1) ∕= r(ã1) if a1, ã1 ∈ Φ and a1 ∕= ã1. Thus, r is a one-to-one

mapping of Φ into a subset of the set of rational numbers, so Φ is countable.

Finally, we show that π(Γ†) = 1. Since Φ is countable and probability measures are

countably additive, it suffices to show that π({a1}×Θ\{θ"(a1)}) = 0 for each a1 ∈ Φ.

In turn, this follows if for each εθ > 0, we have

π([a1 − ε, a1 + ε]×Θ \ (θ"(a1)− εθ, θ
"(a1) + εθ)) → 0 as ε → 0.

Fix a1 ∈ Φ and a strictly single-peaked triple (a1, θ1), (a2, θ
"(a1)), (a1, θ3) in Γ. Let ε ∈

(0, a2 − a1). Since Γn → Γ, (a2, θ
"(a1)) ∈ Γ, and a2 > a1 (and thus θ"(a2) > θ"(a1)),

there exists n ∈ N and (an2 , θ
n
2 ) ∈ Γn with θ"(a1 − ε) < θn2 < θ"(a1 + ε) < θ"(an2 ).

Since Γn is a compact single-dipped set with minΓn
a ≤ θ"(a) ≤ maxΓn

a for all a ∈ AΓn ,

the triple (a,minΓn
a), (a

n
2 , θ

n
2 ), (a,maxΓn

a) cannot be strictly single-peaked. Hence,

we have the following implications:

(i) if a ∈ [a1 − ε, a"(δθn2 )), then Γn
a ∩ (θn2 , 1] = ∅;

(ii) if a ∈ (a"(δθn2 ), θ2 + ε], then Γn
a ∩ [0, θn2 ) = ∅;

(iii) if a = a"(δθn2 ), then Γn
a ∩ (θn2 , 1] = ∅ or Γn

a ∩ [0, θn2 ) = ∅.

Let χn
0 = πn([a1−ε, a1+ε]×[0, θ"(a1)−εθ]) and χn

1 = πn([a1−ε, a1+ε]×[θ"(a1)+εθ, 1]).

By (P2) and condition (iii), we have πn(a"(δθn2 )×Θ \ {θn2}) = 0, and hence
!
#
a!(δθn2

)
$
×[0,θn2 ]

u(a, θ)dπn(a, θ) =

!
#
a!(δθn2

)
$
×[θn2 ,1]

u(a, θ)dπn(a, θ) = 0.

Together with conditions (i) and (ii) (and again using (P2)), we have

0 =

!

[a1−ε,a!(δθn2
)]×[0,θn2 ]

u(a, θ)dπn(a, θ)

≤ max
(a,θ)∈[a1−ε,a!(δθn2

)]×[0,θ!(a1)−εθ]
u(a, θ)χn

0

+ max
(a,θ)∈[a1−ε,a!(δθn2

)]×[θ!(a1)−εθ,θ
n
2 ]
u(a, θ)(1− χn

0 )

=⇒ χn
0 ≤

max
(a,θ)∈[a1−ε,a!(δθn2

)]×[θ!(a1)−εθ,θ
n
2 ]
u(a, θ)

max
(a,θ)∈[a1−ε,a!(δθn2

)]×[θ!(a1)−εθ,θ
n
2 ]
u(a, θ)− max

(a,θ)∈[a1−ε,a!(δθn2
)]×[0,θ!(a1)−εθ]

u(a, θ)
,
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and

0 =

!

[a!(δθn2
),a1+ε]×[θn2 ,1]

u(a, θ)dπn(a, θ)

≥ min
(a,θ)∈[a!(δθn2 ),a1+ε]×[θ!(a1)+εθ,1]

u(a, θ)χn
1

+ min
(a,θ)∈[a!(δθn2 ),a1+ε]×[θn2 ,θ

!(a1)+εθ]
u(a, θ)(1− χn

1 )

=⇒ χn
1 ≤

− min
(a,θ)∈[a!(δθn2 ),a1+ε]×[θn2 ,θ

!(a1)+εθ]
u(a, θ)

min
(a,θ)∈[a!(δθn2 ),a1+ε]×[θ!(a1)+εθ,1]

u(a, θ)− min
(a,θ)∈[a!(δθn2 ),a1+ε]×[θn2 ,θ

!(a1)+εθ]
u(a, θ)

,

where the inequalities hold because u(a1 − ε, θn2 ) > 0 and u(a1 + ε, θn2 ) < 0, by

Assumption 4 and θ"(a1 − ε) < θn2 < θ"(a1 + ε).

By Assumptions 1 and 2, ua(a, θ) < 0 for all (a, θ) in a neighborhood of (a, θ∗(a)).

Hence, for sufficiently small ε, u(a, θ) is maximized over a ∈ [a1 − ε, a"(δθn2 )] at

a = a1−ε, and u(a, θ) is minimized over a ∈ [a"(δθn2 ), a1+ε] at a = a1+ε. Therefore,

passing to the limit n → ∞, for sufficiently small ε > 0 we get

π([a1 − ε, a1 + ε]× [0, θ"(a1)− εθ]) ≤
max

θ∈[θ!(a1)−εθ,θ!(a1)]
u(a1 − ε, θ)

max
θ∈[θ!(a1)−εθ,θ!(a1)]

u(a1 − ε, θ)− max
θ∈[0,θ!(a1)−εθ]

u(a1 − ε, θ)
,

π([a1 − ε, a1 + ε]× [θ"(a1) + εθ, 1]) ≤
− min

θ∈[θ!(a1),θ!(a1)+εθ]
u(a1 + ε, θ)

min
θ∈[θ!(a1)+εθ,1]

u(a1 + ε, θ)− min
θ∈[θ!(a1),θ!(a1)+εθ]

u(a1 + ε, θ)
.

Next, taking into account Assumption 4, we get

lim
ε→0

max
θ∈[θ!(a1)−εθ,θ!(a1)]

u(a1 − ε, θ) = 0, lim
ε→0

max
θ∈[0,θ!(a1)−εθ]

u(a1 − ε, θ) < 0,

lim
ε→0

min
θ∈[θ!(a1),θ!(a1)+εθ]

u(a1 + ε, θ) = 0, lim
ε→0

min
θ∈[θ!(a1)+εθ,1]

u(a1 + ε, θ) > 0.

Consequently, π([a1 − ε, a1 + ε]×Θ \ (θ"(a1)− εθ, θ
"(a1) + εθ)) → 0 as ε → 0.

C.4. Simple-Receiver Case. For the simple-receiver case, we replace Theorem 3

with Theorem 8.
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Theorem 8. Let Assumptions 1–4 hold. Suppose that for all θ1 < θ2 < θ3 and all

a2 > (<)a1 such that θ1 ≤ θ"(a1) ≤ θ3, we have |R| > (<)0 and

u(a2, θ2)u(a1, θ1) ≥ (≤)u(a2, θ1)u(a1, θ2),

u(a2, θ3)u(a1, θ2) ≥ (≤)u(a2, θ2)u(a1, θ3).

Then Γ is single-dipped (single-peaked).

Proof. We give the theorem for the single-dipped case. Suppose, by contradiction,

that Γ is not single-dipped. Then, as shown in the proof of Theorem 3, there exists a

strictly single-peaked triple (a1, θ1), (a2, θ2), (a3, θ3) in Γ such that θ1 ≤ θ"(a1) ≤ θ3.

As shown in the proof of Theorem 4, Assumptions 2–4 and θ1 ≤ θ"(a1) ≤ θ3 imply

u(a2, θ3)u(a1, θ1) > u(a2, θ1)u(a1, θ3).

By (D1) and Theorem 1, we have

V (a1, θ1) + q(a1)u(a1, θ1) ≥ V (a2, θ1) + q(a2)u(a2, θ1),

V (a2, θ2) + q(a2)u(a2, θ2) ≥ V (a1, θ2) + q(a1)u(a1, θ2),

V (a1, θ3) + q(a1)u(a1, θ3) ≥ V (a2, θ3) + q(a2)u(a2, θ3),

Adding up the first inequality multiplied by u(a2, θ3)u(a1, θ2)−u(a2, θ2)u(a1, θ3) > 0,

the second inequality multiplied by u(a2, θ3)u(a1, θ1) − u(a2, θ1)u(a1, θ3) ≥ 0, and

the third inequality multiplied by u(a2, θ2)u(a1, θ1) − u(a2, θ1)u(a1, θ2) ≥ 0, we get

|R| ≤ 0, leading to a contradiction. □

Notice that in the simple-receiver case, the conditions of Theorem 8 are satisfied if

vθ(a, θ) is strictly increasing (decreasing) in θ. Moreover, notice that, in the simple-

receiver case, the proofs of Lemmas 22 and 23 remain valid without Assumption 5,

because
'''''
u(a, θ2)− u(a, θ1) u(a, θ3)− u(a, θ2)

ua(a, θ2)− ua(a, θ1) ua(a, θ3)− ua(a, θ2)

''''' = 0,

'''''
u(a1, θ2)− u(a1, θ1) u(a1, θ3)− u(a1, θ2)

u(a2, θ2)− u(a2, θ1) u(a2, θ3)− u(a2, θ2)

''''' = 0.
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Thus, to prove Theorem 4 in the simple receiver case without Assumption 5, we just

need to replace the vector y in the proof of the single-peaked case with

y = −

(

)*
u(a2, θ3)u(a1, θ2)− u(a2, θ2)u(a1, θ3)

u(a2, θ3)u(a1, θ1)− u(a2, θ1)u(a1, θ3)

u(a2, θ2)u(a1, θ1)− u(a2, θ1)u(a1, θ2)

+

,- .

C.5. Proof of Lemma 3. The support of the full disclosure outcome is ∪θ∈Θ(a
"(δθ), θ).

Thus, by Lemma 1 and Theorem 1, full disclosure is optimal iff there exists q ∈ B(a)

such that

V (a"(δθ), θ) ≥ V (a, θ) + q(a)u(a, θ), for all (a, θ) ∈ A×Θ,

⇐⇒ V (a, θ1)− V (a"(δθ1), θ1)

−u(a, θ1)
≤ q(a) ≤ V (a"(δθ2), θ2)− V (a, θ2)

u(a, θ2)
,

for all a ∈ A and θ1, θ2 ∈ Θ such that θ1 < θ"(a) < θ2. As shown in the proof of

Lemma 10, the left-hand side and right-hand side functions are bounded on A × Θ,

so full disclosure is optimal iff, for all a ∈ A and θ1, θ2 ∈ Θ such that θ1 < θ"(a) < θ2,

we have

V (a, θ1)− V (a"(δθ1), θ1)

−u(a, θ1)
≤ V (a"(δθ2), θ2)− V (a, θ2)

u(a, θ2)
,

⇐⇒ u(a, θ2)V (a, θ1)− u(a, θ1)V (a, θ2) ≤ u(a, θ2)V (a"(δθ1), θ1)− u(a, θ1)V (a"(δθ2), θ2),

⇐⇒ ρV (a"(µ), θ1) + (1− ρ)V (a"(µ), θ2) ≤ ρV (a"(δθ1)), θ1) + (1− ρ)V (a"(δθ2), θ2),

where ρ = u(a, θ2)/(u(a, θ2)− u(a, θ1)), µ = ρδθ1 + (1− ρ)δθ2 , and a"(µ) = a, by the

definition of a"(µ). To complete the proof that full disclosure is optimal iff (4) holds

for all µ, note that for all a and θ1, θ2 ∈ Θ such that θ1 < θ"(a) < θ2, we have ρ =

u(a, θ2)/(u(a, θ2) − u(a, θ1)) ∈ (0, 1); and conversely, for each θ1 < θ2 and ρ ∈ (0, 1),

there exists a unique a ∈ (a"(δθ1), a
"(δθ2)) such that ρ = u(a, θ2)/(u(a, θ2)− u(a, θ1)).

Finally, assume that (4) holds with strict inequality for all µ. Suppose by contradic-

tion that full disclosure is not uniquely optimal. Then, by Theorem 1, there exist

a ∈ AΓ and θ1, θ2 ∈ Γ"
a such that θ1 < θ"(a) < θ2, so

V (a, θ1) + q(a)u(a, θ1) ≥ V (a"(δθ1), θ1),

V (a, θ2) + q(a)u(a, θ2) ≥ V (a"(δθ2), θ1).
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Denote ρ = u(a, θ2)/(u(a, θ2) − u(a, θ1) ∈ (0, 1) and µ = ρδθ1 + (1 − ρ)δθ2 . Notice

that a = a"(µ). Adding the first inequality multiplied by ρ and the second inequality

multiplied by 1− ρ gives

ρV (a"(µ), θ1) + (1− ρ)V (a"(µ), θ2) ≥ ρV (a"(δθ1), θ1) + (1− ρ)V (a"(δθ2), θ2),

contradicting that (4) holds with strict inequality.

C.6. Proof for Example 3. First, notice that the outcome π is implementable.

(P1) holds because, for all a ∈ [a, a]

πa =
dφ([0, t1(a)])

dφ([0, t1(a)] + dφ([a, 1])
δt1(a) +

dφ([a, 1])

dφ([0, t1(a)] + dφ([a, 1])
δt1(a),

απ([a, 1]) = φ([0, t1(a)]) + φ([a, 1]),

as follows from κφ([0, t1(a)]) = (1 − κ)φ([a, 1]), which implies that κdφ([0, t1(a)]) =

(1− κ)dφ([a, 1]) and that t1 is a continuous, strictly decreasing function. (P2) holds

because, for all a ∈ [a, 1],

Eπa [u(a, θ)] = Eπa [1{θ ≥ a}− κ] = πa([a, 1])− κ = 0.

Consider now any other implementable outcome π̃. By (P2), there exists π̃a with

π̃a([a, 1]) ≥ κ, as otherwise Eπ̃a [u(a, θ)] < 0. Thus, by (P1), απ̃([a, 1]) ≤ φ([a, 1])/κ,

as follows from

φ([a, 1]) =

!

A

π̃ã([a, 1])dαπ̃(ã) ≥
! 1

a

π̃ã([a, 1])dαπ̃(ã) ≥ καπ̃([a, 1]).

Since απ([a, 1]) = φ([a, 1])/κ, it follows that απ first-order stochastically dominates

απ̃, and thus, for an increasing V ,
!

A×Θ

V (a)dπ(a, θ) =

!

A

V (a)dαπ(a) ≥
!

A

V (a)dαπ̃(a) =

!

A×Θ

V (a)dπ(a, θ),

showing that π is optimal.

C.7. Proof for Example 4. The optimal outcome π is unique, because there is a

unique implementable outcome π with π(Γ) = 1. To illustrate how the argument

works more generally, we suppose that φ has a density on Θ = [θ, θ], and that there

exists a bifurcation point a0 in the interior of AΓ = [a, a] such that Γa = {t1(a), t2(a)}
with t1(a) = θ"(a) = t2(a) for a ∈ [a, a0], and t1(a) < θ"(a) < t2(a) for a ∈ [a0, a]

where t1 : (a0, a] → [θ, θ"(a0)) is continuous, strictly decreasing, and bijective and

t2 : (a0, a] → (θ"(m), θ] is continuous, strictly increasing, and bijective.
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Define the continuous, strictly decreasing, and bijective inverse t−1
1 : [θ, θ"(a0)) →

(a0, a] by

t−1
1 (θ) = {a ∈ (a0, a] : t1(a) = θ}.

Define the distribution functions F (θ) = φ([−1, θ]) and H(a) = απ([−1, a]) represent-

ing measures φ and απ. Define the θ-section of Γ by Γθ = {a ∈ A : (a, θ) ∈ Γ}. Recall
that, for a ∈ (a0, a], πa = ρaδt1(a) + (1 − ρa)δt2(a) with ρa = u(a, t2(a))/(u(a, t2(a) −
u(a, t1(a)) ∈ (0, 1), by (P2).

For all a ∈ (a0, a], we have Γt2(a) = {a} and Γa = {t1(a), t2(a)}, and thus, by (P1)

and (P2),

dF (t2(a)) = (1− ρa)dH(a).

For all a ∈ [a, a0), we have Γa = {θ"(a)} and Γθ!(a) = {a, t−1
1 (θ"(a))}, with t−1

1 (θ"(a)) ∈
(a0, a] and thus, by (P1) and (P2),

dF (θ"(a)) = dH(a)− ρt−1
1 (θ!(a))dH(t−1

1 (θ"(a))),

where the last term has a minus sign because t−1
1 (θ"(a)) is decreasing in a. So,

dH(a) =

$
0%

0&

1
1−ρa

dF (t2(a)), a ∈ (a0, a],

dF (θ"(a)) +
ρ
t−1
1 (θ!(a))

1−ρ
t−1
1 (θ!(a))

dF (t2(t
−1
1 (θ"(a)))), a ∈ [a, a0).

Substituting θ"(a) = a for a ∈ [a, a0) = [−1, 0), and ρa = 1/2, t1(a) = −a, and

t2(a) = 3a for a ∈ (a0, a] = (0, 1], we obtain that απ has the stated density h.

Finally, to see that the contact set is the stated set Γ, we invoke the following lemma

from Kolotilin and Wolitzky (2020).

Lemma 26. Functions

p(θ) =

$
%

&
T (2θ), θ ∈ [−1, 0),

3T (2
3
θ), θ ∈ [0, 3],

and q(a) =

$
%

&

2T ′(2a)
T ′(0) , a ∈ [−1, 0),

2, a ∈ [0, 3].

satisfy (D1) with equality for all (a, θ) ∈ Γ and strict inequality for all (a, θ) /∈ Γ.

Proof of Lemma 26. Since T is symmetric about 0 (i.e., T (θ − a) = −T (a− θ)) and

T ′ is strictly log-concave, it follows that T ′(0) > T ′(y) for all y ∕= 0 and T (y) is

strictly concave for y ≥ 0. Hence, if y′1 ≤ y1 ≤ y2 ≤ y′2, (y
′
1, y

′
2) ∕= (y1, y2), and

ρ′y′1 + (1 − ρ′)y′2 = ρy1 + (1 − ρ)y2, for some y1, y2, y
′
1, y

′
2 ≥ 0 and ρ, ρ′ ∈ (0, 1), then

ρ′T (y′1) + (1− ρ)T (y′2) < ρT (y1) + (1− ρ)T (y2), by Jensen’s inequality.
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We split the analysis into six cases.

(1) For a ∈ [0, 3] and θ ∈ [a, 3], (D1) simplifies to

3T (2
3
θ) ≥ T (2a) + 2T (θ − a),

which holds with equality for θ = 3a = t2(a) and strict inequality for θ ∕= 3a.

(2) For a ∈ [0, 3] and θ ∈ (0, a), (D1) simplifies to

3T (2
3
θ) + 2T (a− θ) ≥ T (2a) + 4T (0),

which always holds with strict inequality.

(3) For a ∈ [0, 3] and θ ∈ [−1, 0], (D1) simplifies to

2T (a− θ) ≥ T (2a) + T (−2θ),

which holds with equality for θ = −a = t1(a) and strict inequality for θ ∕= −a.

(4) For a ∈ [−1, 0) and θ ∈ [0, 3], (D1) simplifies to

3T (2
3
θ) + T (−2a) ≥ q(a)T (θ − a) + 2T (0),

which always holds with strict inequality because q(a) < 2 and T (θ − a) > 0.

(5) For a ∈ [−1, 0) and θ ∈ (a, 0), (D1) simplifies to

T (−2a) ≥ T (−2θ) + q(a)T (θ − a),

which is equivalent to

T (−2a)− T (−2θ)

T ′(−2a)(−2a+ 2θ)
≥ T (θ − a)− T (0)

T ′(0)(θ − a)
,

which always holds with strict inequality because T (y) is strictly concave for y ≥ 0,

and thus the left-hand side is strictly greater than 1 whereas the right-hand side is

strictly less than 1.

(6) For a ∈ [−1, 0) and θ ∈ [−1, a], (D1) simplifies to

T (−2a) + q(a)T (a− θ) ≥ T (−2θ),

which holds with equality for θ = a = t1(a). For θ < a, the inequality is equivalent

to
T (a− θ)− T (0)

T ′(0)(a− θ)
≥ T (−2θ)− T (−2a)

T ′(−2a)(−2θ + 2a)
,
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which always holds with strict inequality because

T (−2θ)− T (−2a)

T ′(−2a)(2a− 2θ)
=

1

2a− 2θ

! 2(a−θ)

0

T ′(y − 2a)

T ′(−2a)
dy

<
1

2a− 2θ

! 2(a−θ)

0

T ′(y)

T ′(0)
dy

=
T (2a− 2θ)− T (0)

T ′(0)(2a− 2θ)

<
T (a− θ)− T (0)

T ′(0)(a− θ)
,

where the first inequality holds because T ′(x + y)/T ′(x), with y > 0, is strictly

decreasing in x for a strictly log-concave T ′, and the second inequality holds because

T (y) is strictly concave for y ≥ 0. □

C.8. Proof of Proposition 1. Clearly, a"(µ) = Eµ[θ]/(1 + Eµ[θ
2]). To ensure that

Assumption 3 holds, we normalize A = [minθ∈[θ,θ] a
"(δθ),maxθ∈[θ,θ] a

"(δθ)]. Assump-

tions 1, 2, 5 obviously hold. Moreover, since a"(δθ) is strictly increasing on [0, 1] and

strictly decreasing on [1,+∞), it follows that u(a"(δθ), θ
′) > 0 if θ < θ′ ≤ 1 and if

1 ≤ θ′ < θ. Thus, if θ ≤ 1, then Assumption 4 holds, whereas, if θ ≥ 1, Assumption

4 also holds once the state is redefined as −θ. So Theorems 2, 3, 7 and Lemma 3

apply.

Lemma 27 replicates Lemma 1 and Proposition 3 in Zhang and Zhou (2016).

Lemma 27. If θ1 < θ2 and θ1θ2 > (<)1, then ρV (a"(δθ1), θ1)+(1−ρ)V (a"(δθ2), θ2) >

(<)ρV (a"(µ), θ1) + (1− ρ)V (a"(µ), θ2) for all ρ ∈ (0, 1).

a"(µ) (ρ/θ1 + (1− ρ)/θ2).

Proof. For µ = ρδθ1 + (1 − ρ)δθ2 , a"(µ) = (ρθ1 + (1− ρ)θ2)/(1 + ρθ21 + (1− ρ)θ22).

Thus, if θ1 < θ2 and θ1θ2 > (<)1, we have

d

dρ
a"(µ) =

(θ2 − θ1)(θ1θ2 − 1)

(1 + ρθ21 + (1− ρ)θ22)
2
> (<)0,

d2

dρ2
a"(µ) =

(θ2 − θ1)(θ1θ2 − 1)(θ22 − θ21)

(1 + ρθ21 + (1− ρ)θ22)
3

> (<)0.
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Define ϕ(ρ) = a"(µ) (ρ/θ1 + (1− ρ)/θ2). Thus, if θ1 < θ2 and θ1θ2 > (<)1, we have

ϕ′′(ρ) =

.
ρ

θ1
+

1− ρ

θ2

/
d2

dρ2
a"(µ) + 2

.
1

θ1
− 1

θ2

/
d

dρ
a"(µ) > (<)0,

so ϕ is strictly convex (concave), and ρϕ(1) + (1− ρ)ϕ(0) > (<)ϕ(ρ). □

If θ ≥ 1, then θ1θ2 > 1 for all θ1 ≤ θ1 < θ2, so full disclosure is uniquely optimal by

Lemmas 3 and 27. Assume henceforth that θ ≤ 1.

After some algebra, we get, for all a and θ1 < θ2 < θ3,

|S| = (θ3 − θ2)(θ3 − θ1)(θ2 − θ1)(1− θ2θ3 − θ1θ3 − θ1θ2)

θ1θ2θ3

If θ ≤ 1/
√
3 (θ ≥ 1/

√
3), then |S| > (<)0 for all θ1 < θ2 < θ3 ≤ θ (θ ≤ θ1 < θ2 < θ3),

so Γ" is pairwise by Theorem 2. Proposition 4 in Zhang and Zhou (2016) derives a

version of this result for a finite set Θ.

Moreover, if θ ≤ 1/
√
3 (θ ≥ 1/

√
3), then Γ is single-dipped (-peaked), as follows from

Theorem 3 with

y =

(

)*
u(a2, θ3)u(a1, θ2)− u(a2, θ2)u(a1, θ3)

u(a2, θ3)u(a1, θ1)− u(a2, θ1)u(a1, θ3)

u(a2, θ2)u(a1, θ1)− u(a2, θ1)u(a1, θ2)

+

,-

(

)*y = −

(

)*
u(a2, θ3)u(a1, θ2)− u(a2, θ2)u(a1, θ3)

u(a2, θ3)u(a1, θ1)− u(a2, θ1)u(a1, θ3)

u(a2, θ2)u(a1, θ1)− u(a2, θ1)u(a1, θ2)

+

,-

+

,- ,

because, for a < a′ and θ < θ′ with θθ′ < 1, we have

u(a′, θ′)u(a, θ)− u(a′, θ)u(a, θ′) = (a′ − a)(θ′ − θ)(1− θθ′) > 0,

and

Ry =

(

)*
(a2 − a1)

2|S|
0

0

+

,- !

(

)*
0

0

0

+

,-

(

)*Ry =

(

)*
−(a2 − a1)

2|S|
0

0

+

,- !

(

)*
0

0

0

+

,-

+

,- .

Since Γ" is pairwise and Γ is single-dipped (-peaked) if θ ≤ 1/
√
3 (θ ≥ 1/

√
3), it follow

that Γ" is single-dipped (-peaked) if θ ≤ 1/
√
3 (θ ≥ 1/

√
3). Finally, since, by Lemma

27, (6) holds for all p ∈ (0, 1), Theorem 7 yields that, if θ ≤ 1/
√
3 (θ ≥ 1/

√
3),
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then Γ" is single-dipped (-peaked) negative assortative disclosure, and the optimal

outcome is unique.

C.9. Proof of Proposition 3. As shown by Kamenica and Gentzkow (2011), there

exists an optimal outcome with a finite support. Suppose the support contains a

strictly single-peaked triple (a1, θ1), (a2, θ2), (a1, θ3), with θ1 < θ2 < θ3, a1 < a2, and

θ1 < a1 < θ3. Notice that V (a1, θ3) ∕= −∞ (so a1 ≥ σ(θ3)), as otherwise the sender’s

expected utility would be −∞, which cannot be optimal. Taking into account that

σ(θ) = θ for θ ≤ θ0 gives a1 > θ0. Thus, the first row in R is zero. Consider a

perturbation that shifts weights y1 = (θ3 − θ2)ε and y3 = (θ2 − θ1)ε on θ1 and θ3

from a1 to a2 and shifts weight y2 = (θ3 − θ1)ε from a2 to a1, where ε takes the

maximum value such that y1 ≤ π({(a1, θ1}), y2 ≤ π({(a2, θ2}), y3 ≤ π({(a1, θ3}), so
that a strictly single-peaked triple is removed. This perturbation holds fixed a1 and

a2 and thus does not change the sender’s expected utility, since the first row in R is

zero. Repeating such perturbations until all strictly single-peaked triples are removed

(a finite number of times since supp(π) is finite) yields a single-dipped outcome that

is weakly preferred by the sender.


